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ABSTRACT 
 
In this paper, we present the development and application of a 
Technical Feasibility Model (TFM) used in preliminary design 
to determine: whether or not a set of desired product 
specifications is technically feasible, and the optimality of those 
specifications with respect to the Pareto frontier.  The TFM is 
developed by integrating the capabilities of a multidisciplinary 
design framework, a multi-objective design optimization tool, a 
Pareto set gap analyzer, metamodeling methods, and 
mathematical methods for feasibility assessment.  This tool is 
then applied to a three objective example problem and to a five 
objective passenger vehicle design problem by analyzing 
benchmarking data from 78 late model sedans. 
 
1.0 INTRODUCTION 
 
The goal of this research is to develop analytical tools to 
support the definition of a balanced and compatible set of 
product specifications in the preliminary stages of the product 
development process.  Ensuring that product specifications are 
mutually compatible and feasible from an engineering design 
perspective is not a trivial task.  It is, however, a paramount 
task in effective execution of the product development process. 
 
The concepts developed in this paper were designed for use 
with a Multi-Objective Genetic Algorithm (MOGA) in 
conjunction with a General Motors multidisciplinary 
optimization problem.  One of the driving forces behind 
preliminary vehicle design is the amount of market share that 
the proposed design will capture.  In this process, initial designs 

are approached from the customer perspective, defining an 
initial combination of objective values based upon product 
specifications.  However, a vehicle designed solely from a 
marketing domain cannot be guaranteed feasibility in the 
engineering domain.  Technical feasibility is extremely 
important, as it ensures that the proposed design can be 
realistically designed, developed, and manufactured.   
Developing a Technical Feasibility Model (TFM) bridges the 
gap between these domains by providing a tool to ensure 
feasibility in the engineering domain based upon given product 
specifications.  Rather than just using the system constraints to 
ensure feasibility, the TFM also provides information about the 
optimality of a given design in the engineering domain.  
Therefore, a TFM can be used in the preliminary steps of 
product development processes to ensure feasibility or to 
highlight which specifications need to be refined, sacrificed, 
emphasized, or improved upon.   
 
To construct a TFM, an initial set of Pareto optimal points for 
various vehicle performance characteristics is first generated.  
A Gap Analyzer has been developed to identify and populate 
any gaps that might exist within the initial Pareto frontier.  
Potential gaps in the frontier are addressed by tuning the 
MOGA to find designs within those regions.  After a thorough 
representation of the Pareto frontier is developed, a 
mathematical representation of the Pareto set is then 
determined using metamodeling techniques.  To test the 
feasibility of given product specifications, a feasibility 
assessment tool has been developed to determine if a proposed 
vehicle is feasible, feasible and Pareto optimal, or infeasible.  
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This information may then be used to identify compatible 
combinations of performance targets and design parameters.       
 
Having presented the purpose of this paper, Section 2 provides 
the background that is used as the foundation of this work.  
Section 3 presents a detailed discussion of the development of 
the different stages needed in the construction of a Technical 
Feasibility Model (TFM), building upon the concepts presented 
in Section 2.  Section 4 discusses the development of a TFM for 
a selected problem and presents the results of the process.  The 
problem presented is a mathematical problem with three 
objectives to allow for an in-depth explanation of the process 
and results obtained from the TFM.  The final section of this 
paper covers the conclusions of the results as well as 
recommendations for future work in this area. 

2.0 BACKGROUND 
 
This research occurs at the intersection of two technology 
areas: the development and application of multidisciplinary 
design and optimization frameworks and the generation of 
Pareto frontiers.  An overview of the relevant background 
material from each of these fields follows. 

2.1 MULTIDISCIPLINARY DESIGN AND 
OPTIMIZATION FRAMEWORKS 

 
The arrangement of various engineering disciplines within a 
common framework to establish protocols and pathways for 
information flow is a well-established practice within large-
scale engineering firms designing complex products.  These 
frameworks are often embodied in software tools that provide 
for substantial automation of the design process and for the 
application of Multidisciplinary Design Optimization (MDO) 
methods.  The popularity of these frameworks has given rise to 
a number of research programs within various sectors of the 
engineering design community.  In the academic sector, the 
Center for Research in Computation and its Applications 
(CERCA) has developed the Virtual Airplane Design and 
Optimization framework (VADOR) [1].  In the government 
sector, Sandia National Labs have developed the Design and 
Analysis Kit for Optimization (DAKOTA) [2] and researchers 
at NASA Langley have developed the Framework for Inter-
Disciplinary Optimization (FIDO) [3].  In the private sector, 
frameworks have been developed both as commercial products 
and as proprietary applications.  Commercial products include 
the GENESIS / SDRC I-DEAS solution [4] offered by 
Vanderplaats R & D and the commercial version of the 
Federated Intelligent Product Environment (FIPER) [5] being 
developed by Engineous software.  Proprietary corporate 
solutions include the MDO frameworks developed within the 
General Motors R&D Center [6,7]. 
 
These MDO frameworks provide powerful engineering analysis 
environments with substantial improvements in operational 
efficiency; however, they are often still very computationally 
expensive, especially when they include finite element 
analyses.  One means of further improving computational speed 
is to employ surrogate models in place of the computationally 
expensive models.  Surrogate models have been applied 
successfully within the automotive industry in robust 

engineering applications [8] and in MOVE, the Multifunction 
Optimization Visual Environment [9].  The approach in MOVE 
is to employ a series of discipline-specific surrogate models 
with a coordinated schema of design variables and responses.  
In contrast, the approach outlined in this paper is to exercise an 
MDO framework to generate a single surrogate model. 
 
After selecting a framework, it is necessary to choose a 
technique that will effectively study the model to generate the 
needed solutions.  As most models are complex and contain 
multiple objectives, design variables, and constraints, an 
approach must be selected that is robust enough to handle a 
wide range of problems.  This topic is addressed in the next 
section. 

2.2 PARETO FRONTIER GENERATION 
 
Multiobjective optimization is a set of formal tools aimed at 
providing designers with accurate, complete, and rational 
information to make effective decisions.  Fundamental to 
multiobjective optimization and fundamental to this paper is the 
concept of Pareto optimality.  When multiple competing 
objectives exist, the optimum is no longer a single design point 
but an entire set of non-dominated design points.  This is 
commonly known as the Pareto set [10].  The Pareto set is 
composed of Pareto optimal solutions.  In simple terms, a 
Pareto optimal solution is one for which any improvement in 
one objective must result in the degradation of at least one other 
objective.  Mathematically, a feasible design variable 
vector, 'x , is Pareto optimal if and only if there is no feasible 

design variable vector, x , with the characteristics shown in Eq. 
(1). 

)'()( xFxF ii ≤  for all i, i = 1…n 

)'x(F)x(F ii <  for at least one i, 1 ≤ i ≤ n (1) 

 
In which n is the number of objectives and the use of the less 
indicates an improvement in an objective.  The Pareto set may 
be used to generate a Pareto frontier, a continuous 
mathematical function representing all of the possible Pareto 
optimal solutions.   
 
Common methods of generating Pareto frontiers employ 
repeated conversion of multi-objective problems into single 
objective problems.  However, these methods have been proven 
to perform poorly when attempting to populate Pareto frontiers 
under many circumstances.  To avoid these problems, many 
researchers have turned to other methods for generating Pareto 
frontiers.  Messac and Sundararaj [11] have applied Physical 
Programming to generate Pareto frontiers without relying on 
weights, instead using designer preferences in the form of 
metric classes in the optimization process.  Narayanan and 
Azarm [12] have developed the Interactive Sequential Hybrid 
Optimization Technique (I-SHOT), solving a multi-objective 
problem through the repeated application of a simple genetic 
algorithm.  A discussion of the tradeoffs in multi-objective 
optimization when using operators with and within genetic 
algorithms can be found in Azarm, Reynolds, & Narayanan 
[13].  Fitness and ranking schemes for use in genetic 
programming are developed in [14-16], while the development 



 3 

of genetic programming to efficiently generate a thorough 
spread of points along a Pareto frontier is found in [17]. 
 
Given this background, the approach taken in this paper for 
solving multiobjective problems involves the use of genetic 
programming.  A Multi-Objective Genetic Algorithm (MOGA) 
can be used to populate the entire Pareto frontier in a single 
optimization run without repeated conversion from a multi-
objective to single objective problem.  In a multi-objective 
problem, there is not a single measure of performance and a 
simple greater-than/less-than comparison is no longer 
sufficient.  The fitness evaluation in a MOGA incorporates the 
concept of Pareto optimality.  In this way, a design that exhibits 
dominant performance characteristics is favored above one that 
does not and is therefore more likely to proliferate.   
 
In addition, MOGAs typically require far fewer function 
evaluations to converge to a set of solutions than other methods 
(e.g. grid searches, iterative weighted sums).  Another 
advantage is that the MOGA is very robust to ill-conditioned 
problems (multi-modal, discontinuous, discrete, etc).  Because 
of this, the MOGA is more likely than these other methods to 
yield a dense and uniformly populated Pareto frontier.  
Furthermore, since the MOGA is of zero order, the form of the 
evaluation function is irrelevant to the workings of the 
algorithm and the method therefore lends itself well to use with 
other analysis codes for which there is no analytical evaluation 
function.  Also of importance, a MOGA can be tailored for 
specific problems with computational complexity and parallel 
computing issues in mind.   

The stopping criteria for the MOGA used in this paper are 
based upon the maximum number of evaluations allowed.  
While a MOGA is quite effective at finding the frontier in 
complex problems, there is no guarantee that all portions of the 
frontier have been identified.  As mentioned in Section 1, 
metamodeling techniques will be applied to the frontier for use 
within the TFM.  To accurately fit a surface to the frontier 
requires that there be no major holes, or gaps, in the data set of 
non-dominated points.  To identify and fill these potential holes 
in the performance space of the frontier, a Gap Analyzer has 
been created and is described in the next section. 

3.0 FRONTIER GENERATION/GAP ANALYZER    
 
While a MOGA is very efficient at populating a Pareto set, it 
may not always cover the entire performance space.  This is 
most likely to occur when exercising systems in which an 
evaluation of a design point is either computationally or time 
expensive.  In these cases, most of the Pareto frontier has been 
identified as seen in Figure 1.  However, there are significant 
gaps in the frontier that may decrease the fidelity of the surface 
fit to the frontier. 
 
 

 
Figure 1. Initial Pareto Frontier from MOGA Results 

 
To solve this problem, a Gap Analyzer has been developed to 
work with the MOGA in populating these gaps and ensuring 
the integrity of the surface fit.  In order to complete this 
process, the performance space is discretized into a series of 
hyperboxes, or n-dimensional boxes, with step sizes specified 
by the designer.  This allows the designer to select meaningful 
sizes for the gaps in the Pareto frontier that will be identified.  
For example, consider the objective of 0-60 mph acceleration 
time.  A step size of one-twentieth of a second would be too 
fine; it would result in identification of a large number of gaps, 
along with a dramatic increase in either computational or run-
time expense, but this increment is practically imperceptible by 
most customers.  Likewise, a step size of two seconds would be 
too coarse; it would substantially reduce the number of gaps 
identified and the computational expense associated with filling 
them, but this increment is far beyond the threshold of customer 
perception.  The selection of step size for an objective therefore 
involves a tradeoff between gap identification and the time and 
resources needed to evaluate populations of points. 

3.1 GAP ANALYZER METHODOLOGY 
 
Discretization of the performance space into hyperboxes results 
in populated and non-populated hyperboxes.  A populated 
hyperbox is one that contains at least one or more Pareto 
optimal points within its boundaries.  However, because we are 
not able to ascertain with certainty that the points in our frontier 
are actually Pareto optimal points for our system, they will be 
referred to henceforth as non-dominated designs. 
 
Once the populated hyperboxes in performance space have 
been identified, all hyperboxes that are dominated are 
eliminated from further analysis.  This elimination will serve to 
greatly reduce the amount of space that needs to be further 
explored by the MOGA to capture the true behavior of the 
frontier.  A test for weak domination is determined by 
 

 
ii CB FF

max,max,
≤ for all i = 1…n  (2) 

 
for at least one objective it must hold true that 
 

ii CB FF
max,max,

=    (3) 

 
and for at least one objective it must also hold true that 
 

ii CB FF
max,max,

<    (4) 

F2 Identified Gaps in 
the Pareto Frontier

F1 

Identified Gaps in 
the Pareto Frontier
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In which case hyperbox B weakly dominates hyperbox C.  For 
this formulation, the max subscript refers to the larger of the 
two indices value of a hyperbox for each objective.  To 
determine if a hyperbox B strongly dominates hyperbox C, Eq. 
(5) must hold true. 
 

 
ii CB FF

max,max,
< for all i = 1…n  (5) 

 
The maximum value of an objective for a given hyperbox is the 
upper bound, which is determined by the step size initially 
selected by the designer.   
 
For this approach, all hyperboxes that do not weakly or strongly 
dominate a populated hyperbox are eliminated, as seen in 
Figure 2.  The regions shaded in gray correspond to the 
hyperboxes that do not dominate a populated hyperbox.  In 
doing so, a large portion of the performance space can be 
eliminated from further consideration, greatly increasing the 
efficiency with which gaps in the frontier can be identified and 
evaluated. 

F1

Non-Populated, 
Dominated Hypercubes

F2

Non-Populated, 
Dominated Hypercubes

F1

Non-Populated, 
Dominated Hypercubes

F2

Non-Populated, 
Dominated Hypercubes

 
Figure 2. Elimination of Non-Populated, Dominated 

Hyperboxes 
 

From the remaining set of hyperboxes in the performance 
space, the non-populated, non-dominated hyperboxes are 
separated from the non-dominated, populated hyperboxes.  
Next, the hyperboxes from this set that strongly dominate 
populated non-dominated hyperboxes are eliminated as they lie 
in the infeasible performance space for the system.  Elimination 
of these hyperboxes will further reduce the number of 
generations of the MOGA that need to be executed and the 
number of evaluations required from the system.  This test for 
dominance is carried out using Eqs. (2) – (4) and is shown 
graphically in Figure 3. 
 

F1

F2

Non-Populated, 
Dominating Hypercubes

Non-Populated, 
Dominating Hypercubes

F1

F2

Non-Populated, 
Dominating Hypercubes

Non-Populated, 
Dominating Hypercubes

 
Figure 3. Identification of Non-Populated, Dominating 

Hyperboxes 

In this figure, the areas shaded in red are those that contain 
hyperboxes that strongly dominate populated non-dominated 
boxes.  Assuming that populated, non-dominated hyperboxes 
capture the performance bounds of the system, it is impossible 
to realize a feasible design that is located in the red portion of 
the performance space. 
 
Remaining hyperboxes in the performance space correspond to 
gap locations within the frontier.  To reduce the number of 
MOGA instances that must be created, organizing these 
hyperboxes into appropriate clusters is an important task.  The 
indices of these hyperboxes are compared to identify 
hyperboxes that are located adjacent to each other.  Hyperboxes 
that are found to be adjacent are combined into a single gap 
entity, called a gap cluster.  Clustering these hyperboxes 
reduces the number of extra MOGA instances required, while 
still studying all identified regions of the performance space.   
Figure 4 shows the identification of gaps in the frontier from 
the remaining non-populated, non-dominated hyperboxes 
remaining.   
 

F1

F2 Identified Hypercube Gaps 
In Pareto Frontier

Identified Hypercube Gaps 
In Pareto Frontier

F1

F2 Identified Hypercube Gaps 
In Pareto Frontier

Identified Hypercube Gaps 
In Pareto Frontier

 
Figure 4. Identification of Gaps in the Pareto Surface 

 
If the Gap Analyzer algorithm identifies at least one gap, one 
instance of the MOGA is created to further populate each gap.  
The initial population for each instance will contain points 
found in both populated, non-dominated hyperboxes 
surrounding the gap, as well as populated, dominated 
hyperboxes that are adjacent to the specific gap cluster.  Placing 
constraints on the selectors within the MOGA will drive the 
process into the gaps to find designs within these regions.  
These new points serve to fill in the gaps in the frontier, 
ensuring integrity in surface fitting and feasibility assessment. 
 
Once this process has been completed, it is possible to repeat 
the process for a different hyperbox step size in an effort to 
decrease the distance between non-dominated designs located 
on the frontier.   
 
Note that the figures used in this section to illustrate the Gap 
Analyzer algorithm are for a 2-D problem. The implementation 
of the Gap Analyzer, however, is not restricted to 2-D 
problems. The Gap Analyzer algorithm uses concepts from 
multi-objective optimization that may be applied for any 
number of objectives. It is inherently a numerical, iteration-
based method that moves through the performance space, 
incrementing along one objective at a time.  Additionally, the 
computational efficiency of the algorithm is retained in higher 
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dimensions because the algorithm immediately increments to 
the next objective and resets the current objective to the initial 
box on encountering a dominated box when moving along that 
objective.   
 
Application of the Gap Analyzer to a multiobjective problem 
ensures that all regions of the surface have been identified.  The 
added computation expense of this algorithm is balanced by the 
enhanced representation of the surface.  This is an important 
consideration when using metamodeling techniques, as 
discussed in the next section. 

3.2 SURFACE FITTING AND VALIDATION 
 

Once the full set of Pareto optimal points has been created, the 
next step is to develop a means of determining whether a given 
test point is feasible, feasible and Pareto optimal, or infeasible. 
This is accomplished by formulating the Pareto frontier as a 
continuous mathematical function representing each of the 
discrete points in the Pareto set.  It is known that for any given 
point in the performance space, a test point is feasible if it lies 
above this Pareto frontier (assuming minimization of all 
objectives); it is feasible and Pareto optimal if it lies on the 
Pareto frontier; and it is infeasible if it lies below the Pareto 
frontier. The region below the Pareto frontier is said to be 
infeasible because of the conflicting nature of the objectives.  
This conflict requires a tradeoff, preventing designs from 
obtaining optimal values of all objectives at the same time.  
While these designs may not necessarily violate system 
constraints, it is not possible to populate this region of the 
performance space.  It is important to note that for any 
multiobjective problem, the Pareto set is the best possible 
solution set, as mentioned earlier and no design can exist 
beyond the region bounded by this set.  
 
Though a feasible design might satisfy system constraints, in 
this work, feasibility is defined with respect to the design’s 
location in the performance space relative to the Pareto set.  
The utopia point is defined as the point in the performance 
space that is the best for all objectives.  However, this point can 
rarely be achieved due to the conflicting nature of the 
objectives. Figure 5 depicts the problem statement in two 
dimensions. 
 

 
Figure 5. Identification of Potential Points for Feasibility 

Testing 

 
To generate a mathematical representation of the Pareto 
surface, different model forms are used as basis for fitting the 
Pareto set to continuous functions against which feasibility of 
new designs can be tested. The two models investigated in this 
work are: 
 
a) Unconstrained quadratic function: A second order equation 
with no interaction terms is used as the basis function for fitting 
the Pareto points. The generalized equation for this model is: 
 

       ∑∑
−

=

−
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n

i
iin FbFaaF    (6) 

 
in which Fi represents the ith objective in our multi-objective 
performance space. The coefficients ao, ai and bi are determined 
using the method of least squares with no side constraints on 
them. 
 
b) Constrained quadratic function: With no side constraints in 
place, the representation of the Pareto frontier developed using 
Eq. (6) may not necessarily exhibit the inverse relationships 
between objectives inherent in the definition of Pareto 
optimality.  That is, without any restrictions on the coefficients, 
parts of the quadratic surface could have positive gradients, 
which contradicts a basic assumption of the behavior of Pareto 
frontiers (assuming minimization of all objectives).  To prevent 
these from occurring, the coefficients in Eq. (6) are determined 
using the method of least squares but with additional side 
constraints imposed on the coefficient values. If the coefficients 
are constrained such that the surface always has a non-positive 
gradient, it will necessarily exhibit inverse relationships 
between objectives and the folding over of the surface will also 
be prevented. The generalized partial gradient for the ith 
objective is given in Eq. (7). 
 

  iii
i

n Fba
F
F
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∂
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 (7) 

Eq. (8) gives the constraint on the gradient that is necessary to 
reflect the geometric nature of the Pareto frontier (assuming 
minimization of all objectives).  
 

 02 ≤+=
∂
∂
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i
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 (8) 

Further, let Fi be normalized between 0 and 1, with 0 being the 
most desired value and 1 being the least desired objective value 
(since minimization of objectives is sought). The largest (worst 

case) value that 
i

n

F
F
∂
∂

can take is ii ba 2+ . Hence it is sufficient 

to ensure that these worst case values are less than or equal to 
zero. 
 

F1 

F2 Points to be evaluated  
for Feasibility .

max1f

max2f

Points to be evaluated  
for Feasibility .

max1f

max2f
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Therefore, this model may be expressed mathematically as 
given in Eq. (9).  
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Once again, the method of least squares is used to determine 
the value of the coefficients.  Henceforth in this paper, the 
vector of coefficients that are determined for the surface model 
will be represented asθ . Thus, 
 

{ } 1,...,1,,0 −== nibaa iiθ  
 
In the next section, the method to determine the feasibility of a 
proposed design, given a representation of the Pareto frontier is 
presented. 

3.4 FEASIBILITY ASSESSMENT TOOL  
 
The feasibility of a new design is determined based on the 
geometric location of the test point relative to the Pareto 
frontier. The steps of the method, termed as the Ray Method are 
as follows. 
 
1. First, the equation of the line joining the Utopia point and the 
candidate design point is generated. The vector form of an n-
dimensional equation is given in Eq. (10). 
 
 ηtrr += 0    (10) 
 
where, 
r - N-dimensional variable vector 

0r - N-dimensional point (corresponding to either the Utopia 
point or the test point) 

η  - Slope Vector (determined using the Utopia and test point) 
 t - variable parameter (representing single degree of freedom) 
 
Consider a design point P0, represented as, 

 
P0 = ),....,,,( 0302010 nFFFF  

 
and the Utopia point of the performance space (assuming 
minimization of all objectives is desired), given as,  
 

U = ),...,,,( minmin3min2min1 nFFFF  
 

Then, the parametric form of Eq. (10) is given in Eq. (11). 
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30min3303

20min2202

10min1101
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FFtFF

−+=
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−+=

    (11) 

2. Next, the point of intersection of the generated line and the 
Pareto frontier is determined. To do so, Eq. (11) is substituted 
into either Eq. (6) or (9) (based on the model used). This yields 
one equation with the single unknown t. 
 
3. The equation determined in step 2 is solved for t. The 
determined value of t is substituted back into Eq. (11), 
producing a single solution that is the point of intersection of 
the line joining the Utopia point and the test point with the 
Pareto frontier (Eq. (6) or (9)).  
 
4. Finally, the distances from the Utopia point to the 
intersection point and from the Utopia point to the test point are 
evaluated. There are three possible cases that could occur 
depending upon this distance. 
 
x If the distance from the Utopia point to the point of 

intersection is greater than the distance from the Utopia 
point to the test point, then the test point is infeasible 
(below the Pareto frontier). This implies that the test point 
is closer to the Utopia point than the Pareto frontier and is 
shown graphically using a two dimensional example in 
Figure 6.  

 

F1

F2

Point of Intersection of line joining 
Utopia point and test point, with the 
Pareto Frontier.

d1

d2

d1 – Distance from Utopia point to test 
point.
d2 – Distance from Utopia point to point 
of Intersection.

Point of Intersection of line joining 
Utopia point and test point, with the 
Pareto Frontier.

d1

d2

d1 – Distance from Utopia point to test 
point.
d2 – Distance from Utopia point to point 
of Intersection.

F1

F2

Point of Intersection of line joining 
Utopia point and test point, with the 
Pareto Frontier.

d1

d2

d1 – Distance from Utopia point to test 
point.
d2 – Distance from Utopia point to point 
of Intersection.

Point of Intersection of line joining 
Utopia point and test point, with the 
Pareto Frontier.

d1

d2

d1 – Distance from Utopia point to test 
point.
d2 – Distance from Utopia point to point 
of Intersection.

 
Figure 6. Infeasible Point Identification Using the Ray 

Method 

x If the distance from the Utopia point to the point of 
intersection is less than the distance from the Utopia point 
to the test point, then the test point is feasible and 
dominated (above the Pareto frontier).  This implies that 
the test point is indeed feasible, but technically not as 
superior as it could be.  This is shown for a two 
dimensional example in Figure 7. 

 

F1

F2

d1

d2

d1 – Distance from Utopia 
point to test point.
d2 – Distance from Utopia 
point to point of Intersection.

d1

d2

d1 – Distance from Utopia 
point to test point.
d2 – Distance from Utopia 
point to point of Intersection.

F1

F2

d1

d2

d1 – Distance from Utopia 
point to test point.
d2 – Distance from Utopia 
point to point of Intersection.

d1

d2

d1 – Distance from Utopia 
point to test point.
d2 – Distance from Utopia 
point to point of Intersection.

 
Figure 7. Feasible Point Identification Using the Ray 

Method 
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x If the distance from the Utopia point to the point of 
intersection is equal to the distance from the Utopia point 
to the test point, then the test point is feasible and non-
dominated.  This implies that the test point is at the 
current limit of performance and is a potentially superior 
design.   

 
Thus the steps detailed above may be applied to determine 
whether or not a point is feasible with respect to the Pareto 
frontier objectives. In Section 4, this method is demonstrated 
through an example problem with 3 objectives and 2 design 
variables. 

4.0 FEASIBILITY ASSESSMENT: RESULTS 
 
In this section, we present results from the application of the 
feasibility assessment methods.  Section 4.1 introduces the 
problem used for this case study.  This problem is presented to 
help explain the results of the TFM, as the GM problem is 
proprietary and cannot be presented here.  The data points used 
are found using the MOGA and are presumed to be Pareto 
optimal because they are all non-dominated. Section 4.2 covers 
the application of the Gap Analyzer to identify the possible 
gaps in the Pareto set.  Once the gaps have been filled and the 
Pareto set has been sufficiently populated, surfaces are fit 
through these points using the methods discussed in Section 
3.2.  These results are discussed in Section 4.3.  Finally, 
Section 4.4 contains a demonstration of the feasibility 
assessment method. 

4.1 RESULTS: PROBLEM STATEMENT 
 
The approach to determine technical feasibility is applied to a 
multiobjective problem adapted from [18].  This problem 
consists of three objective functions and two design variables, 
suiting both the needs of this paper in terms of complexity and 
in the ability to visualize the results.  The problem statement is 
given in Eq. (12). 
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Development of the initial Pareto frontier was completed by 
running a MOGA for 58 generations, resulting in a total 
evaluation of 10000 unique designs.  These evaluations resulted 
in a Pareto frontier composed of 6829 non-dominated designs.  
We chose to evaluate such a large number of designs to allow 
for an exhaustive, but not entirely complete, representation of 
the frontier.   
 
Plotting the Pareto frontier in the performance space, as seen in 
Figure 8, the overall shape can be studied.  Examining the 
location of the Pareto points, they appear to be dispersed over 

the range of the frontier, and not present only in large clusters.  
Obviously, the size of the discretization selected for each 
objective will have a dramatic effect on the number of potential 
gaps identified in the frontier. For this problem, a discretization 
size of 0.2 was selected for all objectives.  This value was 
chosen to allow for the identification of gaps that would be of a 
significant size to warrant further investigation.  Also, it is 
possible to choose a different discretization size for each 
objective, and selecting the same discretization size essentially 
creates hypercubes in the performance space instead of 
hyperboxes. 
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F1

F2

F3

 
Figure 8. Pareto Frontier from MOGA Results 

 
Table 1 lists the minimum and maximum values on the Pareto 
frontier for each objective.  Using this information along with 
the discretization size, the performance space is portioned into 
4831 unique hyperboxes.  Each hyperbox contains an index for 
its location in each objective, with the value 1 corresponding to 
the hyperbox index closest to the minimum of that objective.  
Having completed this, the number of filled hyperboxes must 
be identified.  As stated in Section 3.1, a filled hyperbox is one 
that has at least one Pareto frontier design located within its 
boundaries.  There were 250 hyperboxes identified in the 
performance space that contained points from the Pareto 
frontier.  Figure 9 is a plot of the Pareto frontier in the 
performance space.  The axes relate to the index of the 
hyperbox, and the points correspond to the centroid of each 
hyperbox.  In this frontier, there are currently 250 points 
composing the frontier.  However, there still are 4581 
hyperboxes remaining in the performance space for the gap 
analyzer analysis. 
 

Objective Minimum 
Value 

Maximum 
Value 

Discretization 
Size 

F1 0.0041 4.0243 0.2 
F2 1.0007 5.1950 0.2 
F3 2.0001 4.0794 0.2 

Table 1. Maximum and Minimum Values on the Pareto 
Frontier for Each Objective 
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Figure 9. Hyperbox Index Representation of the Pareto 

Frontier 

In the next section, the Gap Analyzer methodology introduced 
in Section 3.2 is used to study the gaps in this example 
problem. 

4.2 RESULTS: GAP ANALYSIS 
 
Execution of the Gap Analyzer on the Pareto surface began 
with the identification of hyperboxes that were non-populated 
and dominated by Pareto points.  Of the 4581 hyperboxes to be 
accounted for in the performance space, it was found that 3237 
of the hyperboxes were strongly dominated by Pareto points.  
Next, the hyperboxes that strongly dominated populated 
hyperboxes are removed, as they cannot contain points that lie 
on the Pareto surface.  There were 370 hyperboxes identified in 
the performance space that strongly dominated hyperboxes 
containing Pareto frontier points.  Completing this step, there 
were 994 remaining hyperboxes in the performance space that 
could potentially correspond to gaps in the Pareto frontier. 
 
Next, the list containing the indices for the 994 remaining 
hyperboxes were compared to the indices of the populated 
hyperboxes of the Pareto frontier.  Hyperboxes that could 
identify as a gap in the frontier were determined to be those that 
were adjacent to the populated hyperboxes.  Completing this 
analysis left 230 unique hyperboxes in the performance space.  
These 230 hyperboxes correspond to gaps in the Pareto frontier.  
With the identification process complete, it was necessary to 
determine possible gap clusters to be studied by additional 
instances of the MOGA.  The breakdown of the original 4831 
into their separate categories is shown in Table 2. 
 
As expected, the majority of hyperboxes in the performance 
space belong to those in the category of being strongly 
dominated by filled hyperboxes.  The number of hyperboxes 
needing investigation as potential gaps – in this problem 230 – 
relate to only 4.6% of the entire performance space, greatly 
narrowing the region of space that must be investigated.   
 
 
 
 
 

Hyperbox Type 
Number of 
Hyperboxes 

Percentage of 
Performance 

Space 
Filled (Pareto) 250 5% 
Strongly Dominated by 
Filled Hyperboxes 3237 67% 

Strongly Dominating Filled 
Hyperboxes 370 7.6% 

Weakly Dominated 
Hyperboxes Not Adjacent to 
Filled Hyperboxes 

764 15.8% 

Remaining Hyperboxes 
Adjacent to Filled 
Hyperboxes (Gaps) 

230 4.6% 

Total 4831 100% 

Table 2. Analysis of Hyperbox Type and Percentage 
Composition in the Performance Space 

 
In order to efficiently apply new instances of the MOGA to 
investigate the potential gaps in the frontier, the hyperboxes 
must be clustered.  Clustering of the gaps was completed by 
combining hyperboxes that were adjacent to each other in the 
performance space.  For this work, adjacency is defined as 
having an index number a maximum of one increment away in 
any dimension.  Also implemented in this procedure was the 
constraint that a cluster was stopped after it began to contain 
more than ten percent of the total number of hyperboxes 
identified as potential gaps. This is done in order to constrain 
the region in the performance space where new instances of the 
MOGA would be created. Given the definition of adjacency, it 
is hypothetically possible to combine all hyperboxes identified 
as gaps into a single cluster. To avoid this from happening, the 
constraint is set on the number of hyperboxes that can form a 
gap. Using this constraint, nineteen different clusters were 
identified in the performance space.  The number of 
hyperboxes found in each cluster is shown in Figure 10. 
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Figure 10. Distribution of Hyperboxes Per Gap Cluster 

 
After putting the potential gap hyperboxes into the 19 different 
clusters, instances of the MOGA were created to attempt to 
place designs within the clusters.  As this problem is a 
minimization problem, the upper index of each cluster was used 
as a constraint for each instance of the MOGA.  This ensures 
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that the MOGA will attempt to populate only the region of 
interest as defined by each cluster.  As an example, two clusters 
are used in the following discussion.  Clusters 1 and 4 have 
been selected and the upper bound of the indices for each 
cluster is shown in Table 3. 
 

Cluster Index for F1 Index for F2 Index for F3 
1 2 19 11 
4 3 11 5 

Table 3. Upper Bound Indices for Selected Clusters 

 
For each cluster studied, another instance of the MOGA was 
created.  The original problem statement was modified by 
adding constraints to make designs only within the bounds 
identified by each gap cluster feasible.  Each instance of the 
MOGA was allowed to run for 1000 evaluations.  This number 
was arbitrarily selected, as the purpose of this exercise was not 
computational efficiency, but instead determining if a selected 
gap could indeed be filled.  Gap 1 consisted of 24 clustered 
hyperboxes in the performance space, and after evaluating the 
feasible designs found from the separate MOGA run, 2 of those 
hyperboxes were filled with designs.  Gap 4 was composed of 
only 2 hyperboxes, and the separate instance of the MOGA was 
unable to find any designs that would fill those hyperboxes.  
This data is summarized in Table 4. 
 

Cluster Hyperboxes in Cluster Filled Hyperboxes 
1 24 2 
4 2 0 

Table 4. Results of Gap Study 

 
Having filled hyperboxes while studying Gap 1, those 
hyperboxes need to be made a part of the Pareto frontier.  
Modifying the graph seen in Figure 9, the two black circles in 
the performance space shown in Figure 11 represent the 
location of the two hyperboxes filled when studying Gap 1.  
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Filled 
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Filled 
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Figure 11. Filled Hyperboxes from Gap 1 Study 

 
Studying each of the gaps in this manner will provide a 
complete representation of the Pareto frontier.  This 

representation of the frontier can be used for surface fitting, 
which is discussed in the next section. 

4.3 RESULTS: CURVE FITTING 
 
Using the Pareto set generated by the MOGA, the two methods 
presented in Section 3.3 are applied to determine mathematical 
expressions of the Pareto surface.  For both cases, a least-
squares regression was applied to the data to develop the 
coefficients of the polynomial surface in Matlab.  For the 
constrained surface, the Optimization Toolbox within Matlab 
was also used to determine the coefficients while handling the 
constraints placed upon the model.  The R2 values for the two 
different models are given in Table 5. 
 

Pareto Surface Model R2 

Unconstrained Quadratic (Eq. (6)) 0.891 

Constrained Quadratic (Eq. (9)) 0.376 

Table 5. R2 values for Pareto Surface Models 

As seen in Table 5, the Unconstrained Quadratic model exhibits 
substantially less fitting error than the Constrained Quadratic 
model. This result is as expected due to the constraints imposed 
on the allowable values of the coefficients. All Pareto sets are 
required to have non-positive gradients since the objective 
functions forming the Pareto frontier are assumed to be 
minimized and are competing against each other. Since the 
Pareto set has a non positive gradient as seen in Figure 8 and 
the constrained model provides a low fit, only the 
unconstrained model is used for this case study. Additionally, 
for problems with Pareto sets known to having non-positive 
gradients, using a constrained model would be overkill. For 
example, in the application of the method for the General 
Motors problem, it was not known if the gradients were non-
positive and hence the constrained surface fit was used. This 
might be the case for all problems encountered in industry since 
these problems are larger than the one used here.  
 
The coefficients of the unconstrained surface of Eq. (6) are 
given in Eq. (12). 
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With the given mathematical function of the Pareto surface, the 
feasibility study is performed next for potential new designs in 
Section 4.4 

4.4 RESULTS: FEASIBILITY TESTING 
 
Once the expressions for the Pareto surfaces are generated, they 
may be used to evaluate new sets of product specifications for 
feasibility.  Typically, these sets would be desired combinations 
of specifications. In this paper the process of evaluating 
feasibility is illustrated using performance values determined 
from the nature of the performance space. Since the entire 
performance space is known, data points from the regions that 
are known to be feasible and infeasible are generated and used 
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in the code developed to determine feasibility. Note that when 
generating this data, only the objective function values are 
provided with no design variable information. Determining the 
corresponding design variable values once a set of performance 
measures are determined to be feasible is an area of ongoing 
work and the methods developed for this are shown in [19]. 
Using this data set serves two purposes: not only does it 
illustrate the feasibility assessment process it also provides 
insight into the validity of the model. The results of applying 
the Ray Method to test for feasibility for the unconstrained 
function representation of the Pareto frontier for the case study 
problem are shown in Table 6.  
 

Number F1 F2 F3 
Feasibility 

Results 
1 4.0 5.0 4.0 Feasible 

2 3.0 3.0 3.0 Feasible 

3 0.0 0.0 0.0 Out of Bounds 

4 1.1059 2.1044 2.5518 Feasible 

5 1 2 2.2 Infeasible 

Table 6. Feasibility Results for Test Points 

Looking closely at the results shown in Table 6, test points 1 
and 2 lie above the Pareto set of points in the performance 
space, thus entitling them feasible. The 3rd test point is out of 
bounds since the performance measure values are better than 
the Utopia point. Test point 4 is said to be feasible, though 
based on the distance measures, the point lies precisely on the 
Pareto set. The code calls this point feasible as opposed to 
Pareto optimal due to numerical error. However, since the 
feasibility assessment tool is used to only determine if a point is 
feasible from the engineering domain, calling test point 4 
feasible is sufficient. Finally, test point 5 is said to be infeasible 
since it lies below the Pareto set of points. The performance 
values shown in Table 6 are plotted along with the Pareto set of 
points and are shown in Figure 12.  
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Figure 12. Feasibility Test Points in Performance Space 

Thus we see from Figure 12 that the feasibility assessment tool 
behaves exactly as it is expected to for the 3 objective case 
study problem.  
 
In three dimensions, the application of the feasibility test is 
trivial.  Dealing with a three dimensional performance space 
allows for easy visualization and the feasibility of a test point 
can clearly be seen.  However, when dealing with problems of 
greater than three objectives, using visualization techniques no 
longer becomes a simple task.   Application of the Ray Method 
allows for quick and efficient testing of numerous test designs 
with very little computational expense.  To demonstrate this for 
the General Motors problem, feasibility is tested using 
specifications from 78 late-model sedans.  This problem 
consisted of 5 objective functions, 10 design variables, and 3 
constraints.  Because of the large number of dimensions in this 
problem, the surface that was created was not only difficult to 
understand, but almost impossible to visually use when 
determining the feasibility of a given test point.  Also, in 
practical application of the feasibility model it is important to 
quantify how optimal a given test point was with respect to the 
Pareto surface.  It is not enough to simply know whether the 
test point was feasible; vehicle development engineers need to 
understand to what extent a given test point challenges the state 
of the art in vehicle development technology.  This information 
could only be determined via the use of a Pareto frontier.  
 
Of the vehicles failing the feasibility test, 17 of them failed 
because they has a better value in at least one objective than the 
best value found in the Pareto set.  In each case, this was 
because the vehicles employed technologies that were outside 
the scope of the multidisciplinary analysis system used to 
generate the Pareto surface.  This is not only an expected result, 
but an encouraging one because it demonstrates the consistency 
of the framework being used: vehicles employing technologies 
within the scope of the underlying analysis system pass the 
feasibility test, as expected, while those employing 
technologies outside the bounds of the underlying analysis 
system fail the feasibility test, also as expected. 
 
Thus, in this section, the results of the Feasibility assessment 
are presented and these results not only illustrate but validate 
the developed methodology of this paper. In the next section, 
some concluding remarks and sources of future work are 
presented. 

5.0    CONCLUSIONS AND FUTURE WORK 
 
In this work, we have successfully developed an approach to 
determine whether or not a given set of performance 
specifications, actual or hypothetical, is feasible based on a 
multi-objective analytical model.  This method can be used to 
effectively map the performance limits for a set of available 
technologies and to integrate gap analysis, metamodeling, and 
feasibility assessment algorithms to assess the feasibility of a 
vector of performance attributes.  Application of the approach 
using a simple 3 objective case study is presented along with a 
feasibility test of 5 hypothetical points from different locations 
of the performance space.  This approach was also applied to a 
five objective vehicle design problem where both the feasibility 
and optimality of 78 vehicles were tested.  These methods and 
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tools provide engineers with critical information that allows 
them to define product specifications while maintaining high 
confidence for successful realization of the product’s design. 
 
Future work in this area includes expanding capabilities of the 
analytical model to include additional attributes as well as the 
additional degrees of design freedom required to support them.  
This expansion may require the application of parallel 
processing techniques and the development of a more 
sophisticated MOGA to reduce the time necessary for sampling 
of the design space.  As the scope of the performance space 
expands, the Gap Analyzer will play an increasingly important 
role in maintaining a high level of efficiency when populating 
the Pareto set by reducing the overall number of evaluation and 
generations required by the MOGA.  Additional information 
about the relationships between performance space and design 
space in the neighborhood of a given test point could also 
provide additional benefit when considering tradeoffs in this 
multi-objective preliminary design process. 
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