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ABSTRACT 
 
In this paper, we investigate the issue of convergence in 
multiobjective optimization problems when using a Multi-
Objective Genetic Algorithm (MOGA) to determine the set of 
Pareto optimal solutions. Additionally, given a Pareto set for a 
multi-objective problem, the mapping between the performance 
and design space is studied to determine design variable 
configurations for a given set of performance specifications. 
The advantage of this study is that the design variable 
information is obtained without having to repeat system 
analyses. The tools developed in this paper have been applied 
to develop a Technical Feasibility Model (TFM) used by 
General Motors as well as a simple multiobjective optimization 
problem in this paper. The multi-objective problem is primarily 
used to illustrate the developed methodology. 

 
1.0 INTRODUCTION 
 
The goal of creating a Technical Feasibility Model is to 
develop a set of analytical tools to support the preliminary 
stages of the design process.  Feasibility in this tool is assessed 
by ensuring that product specifications are mutually compatible 
from an engineering design perspective.  This paper covers two 
issues critical to successful deployment of a Technical 
Feasibility Model.  The first issue is the convergence of the 
multiobjective optimization problem when using a Multi-
Objective Genetic Algorithm (MOGA) to generate a set of 
Pareto optimal solutions upon which the TFM is based.  From a  

 
 
business perspective, it is critical to understand the convergence 
behavior of the MOGA a priori so that adequate resources can 
be allocated to development of the TFM.  The second issue is 
the nature of the correspondence between the Pareto-optimal 
solutions in the performance space and the corresponding 
variables and configurations in the design space.  A point 
located in the performance space may map to many points in 
the design space.  That is, the same performance may be 
obtained by multiple design configurations.  Knowledge of this 
correspondence may be used to understand how slight changes 
in the performance space may change the configuration and 
values in the design space.  It also lends insight into the 
robustness of solutions by providing the designer with several 
viable design alternatives for achieving a desired performance. 
 
The study of convergence criteria is critical for computationally 
expensive problems since evaluation time could seriously 
inhibit the success of the preliminary design process.  Mapping 
from the performance to design space is critical to the 
understanding how changes in product specifications affect the 
design configuration.  This paper presents both the process used 
to evaluate the TFM development procedures in [1] and a 
discussion of the results of the evaluation.  Section 2 provides 
background information into multiobjective optimization, 
convergence of MOGAs, and the issues pertaining to 
performance to design space mapping. 
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2.0 BACKGROUND 
 
It has long been accepted in the engineering design community 
that product design can no longer be viewed with the 
perspective of reducing cost alone. Increased demands by 
consumers on products and processes as well as fierce 
competition amongst manufacturers have pushed the concept of 
multi-objective optimization as the methodology to be used for 
the design of new products. The challenge now is to design a 
product with low cost but at the same time satisfying other 
consumer demands such as a need for increased luxury and 
comfort in the use of the product. Designer also seek to provide 
attributes of “surprise and delight” in order to get the edge over 
competitors. Laws related to safety and quality of products 
further increase the number of objectives that need to be 
simultaneously satisfied in the design of modern day products. 
Thus, multi-objective optimization, which provides essential 
tools in achieving many goals simultaneously, is an important 
area of research and the primary focus of this paper [2]. 
 
Multi-objective problems rarely have a single solution and 
usually have a set of multiple points forming the solution set. 
These solutions, called Pareto-optimal solutions are those in 
which any improvement in one objective must result in the 
degradation of at least one other objective since the objectives 
conflict with each other [3].  Mathematically, a feasible design 
variable vector, 'x  is Pareto optimal if and only if there is no 

feasible design variable vector, x , with the characteristics 
shown in Eq. (1). 

)'()( xfxf ii ≤  for all i, i = 1…n 

)'x(f)x(f ii <  for at least one i, 1 ≤ i ≤ n (1) 

 

where n is the number of objectives and the use of the less than 
operator indicates an improvement in an objective, since it is 
assumed that the objectives are minimized. 
 
With the increase in availability of computation resources, 
heuristic optimization methods such as genetic algorithms that 
are essentially computationally intensive have been extended 
for the use of multi-objective problems. The advantage of using 
a Genetic Algorithm for multi-objective problems, called a 
Multi-Objective Genetic Algorithm, is that the final result is a 
set of multiple solutions that do not dominate each other. If the 
MOGA is run long enough, the solution set obtained can be 
approximated to be the Pareto set [4]. Knowledge of designs 
that make up the Pareto set is invaluable since these designs are 
the best solutions to the multi-objective problem. 
 
The research presented in this paper has been conducted to aid 
in the preliminary phases of the vehicle development process. 
The proposed framework for this system is computationally 
intensive and incorporates evaluations in different software 
packages [5-6]. Since each evaluation of the objective functions 
is extremely expensive in terms of computation time, issues 
pertaining to the convergence of the MOGA to the Pareto set 
become very important. Some of these issues are related to the 
accuracy of the Pareto frontier, the spread of Pareto points and 
the existence of clusters since all these parameters depend on 
the convergence of the MOGA. Azarm [7] has developed 

various metrics that enable the designer to either monitor the 
quality of the Pareto frontier or use it to compare the solution 
obtained from different multi-objective optimization methods. 
Zitzler [8] provides the C and S metrics that directly measure 
the convergence of Pareto solution set. Deb [9] has proposed a 
metric that evaluates the convergence of a solution set to a 
reference set while Veldhuizen [10] proposes an error ratio to 
determine if a solution set has converged to the true solution 
set. In this paper, a study is presented that compares non 
dominated solution sets, obtained by using smaller number of 
function evaluations, to the true Pareto set. This is critical since 
each function evaluation is computationally expensive, as 
mentioned earlier. 
 
In addition to reducing the number of function evaluations to 
obtain the Pareto set, vehicle development teams also require 
knowledge of the relationships vehicle attributes and vehicle 
design parameters.  The desired attributes or objective function 
values (also referred to as performance measures) for the new 
vehicle design are available a priori from marketing, as these 
attributes are developed to maximize customer satisfaction.  To 
provide the design variable information corresponding to the 
desired performance measures, vehicle development engineers 
would need to work backwards within their analysis systems, 
which is already known to be computationally intensive. To 
avoid these additional analyses, up-front mapping of design 
variable values to the existing set of Pareto points could be used 
to determine the design configuration of the new vehicle. 
 
Mapping of the performance space to the design space is not 
new to engineering design and has been recognized as a 
challenging task since the mapping can be one-to-many, with 
one objective function point mapping back to multiple design 
points [11]. Past work includes the use of a visualization 
technique called Cloud Visualization to determine design 
variable values for a given point in the performance space [12]. 
The use of design variable mapping has also been shown to 
accelerate the design process for a multi-piece propshaft [13]. 
Additionally, mapping between performance and design spaces 
is critical in morphing systems where changing from one 
optimal configuration to another can potentially create drastic 
changes in the design configuration [14]. In this work, data 
obtained from the MOGA for Pareto set generation is used to 
determine the design variable values of the new design using a 
mapping between the performance and design spaces.  
 
Given the background to the work presented in this paper, 
Section 3 discusses in detail the MOGA convergence studies 
mentioned earlier in this section. Section 4 presents the theory 
used for the performance to design space mapping. Section 5 
presents an application of the work in this research to a simple 
case study problem and Section 6 provides some concluding 
remarks and areas of future work.  

 
3.0 MOGA CONVERGENCE 

 
The first step of constructing a Technical Feasibility Model 
relies upon the usage of a Multi-Objective Genetic Algorithm 
(MOGA) to solve a multiobjective optimization problem.  The 
solution to this problem is a set of non-dominated solutions that 
compose the Pareto frontier.  Metamodeling techniques are then 
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used to fit a constrained second order polynomial to these 
Pareto points.  This surface is then used to assess technical 
feasibility as well as the optimality of a given test point.  To 
ensure that the entire frontier was populated, an exhaustive 
number of evaluations were used.  For the purposes of this 
paper, the MOGA process used to create the Pareto frontier will 
be referred to as the ‘exhaustive’ MOGA.  The solution of this 
exhaustive MOGA serves as the Pareto frontier benchmark 
when comparing different Pareto frontier solutions.  However, 
such a large number of evaluations for a multiobjective system 
may result in extreme computational expense.  Therefore, for 
such complex systems, completing such a large number of 
functional evaluations may not be practical, or even feasible.   
 
The large number of evaluations used in the exhaustive MOGA 
raises a significant research question.  This question addresses 
the extent to which the quality of the frontier is affected when 
changing the maximum allowed number of evaluations.  By 
investigating the convergence of the MOGA, it may be possible 
to determine a tradeoff between the number of designs 
evaluated and the quality of the Pareto frontier.  Understanding 
this tradeoff will enable the effective evaluation of problems of 
increased computational complexity.  First, however, it is 
necessary to determine a method of comparing the results of 
different MOGA test cases. This method is described in the 
following steps: 
 

1. Complete an exhaustive sampling of the model: As 
mentioned earlier, this results in a set of objective function 
values that are assumed to be the true Pareto set. 

 

2. Specify indifference thresholds: This refers to the change 
in each objective function within which the designer is 
indifferent to all objective function values. 

 

3. Discretize the performance space using the defined 
thresholds: Using the indifference thresholds to establish 
the discretization sizes for each objective, the performance 
space is divided into a collection of “hyperboxes” (for 
problems with more than 3 objectives). For a problem with 
3 objectives, the performance space would be discretized 
into a set of equally sized rectangular cuboids, where the 
size of each cuboid is the indifference threshold value for 
each objective. 

 

4. Represent the exhaustive MOGA as a collection of 
hyperboxes in the performance space: Using the 
discretized performance space, it is possible to visualize 
the resultant view of the Pareto frontier as seen in Figure 1. 

 

 
Figure 1. Representing the Pareto Frontier as a Collection 

of Hyperboxes 

To determine if a hyperbox in the performance space is part of 
the Pareto frontier, at least one non-dominated design must be 
present in a given hyperbox. If there exist multiple design 
points in the same hyperbox, the design engineer is said to be 
indifferent to all these designs. Pictorially, this scenario is 
shown in Figure 2. 
 

 
Figure 2. Identification of Indifferent Designs Within a 

Performance Space Hyperbox 

For the problem shown in Figure 1, the hyperboxes populated 
by the Pareto points (determined using the MOGA) are shown 
in Figure 3. 
 

 
Figure 3. Identification of Hyperboxes Filled in the 

Performance space by the Pareto Frontier 

5. Compare the results of other MOGA runs to the hyperbox 
solution set of the exhaustive study: MOGA cases using 
different number of function evaluations are investigated 
and compared to the exhaustive Pareto frontier.  These 
cases were developed to analyze the tradeoff of maximum 
allowed evaluations to the quality of the Pareto frontier. 
The number of function evaluations available is treated as 
a constraint in the setup of the MOGA.   

 
In order to effectively generate the best final population, an 
algorithm for implementing the MOGA when using the 
maximum number of available evaluations is developed.  The 
first stage starts with a small initial population, and maintains a 
constant population size for a limited number of evaluations 
(i.e., a third of the available evaluations).  This stage is 
designed to drive the members of the population to the Pareto 
frontier.  However, by doing so, it is not guaranteed that the 
points of the population are evenly distributed along the 
frontier.  To remedy this, the second stage allows the 
population of the MOGA to grow to accommodate all identified 
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non-dominated designs for the remaining number of design 
evaluations. Graphically, this is shown in Figure 4. 
 

 
Figure 4. Depiction of MOGA for 500 Evaluation Test Case 

 
As with the exhaustive MOGA, the filled hyperboxes in the 
performance space for each MOGA population are identified.  
Comparing these hyperboxes, the number of hyperboxes that 
are filled by both the exhaustive MOGA and each test case is 
recorded.  As the number of design evaluations increases, so 
does the number of exhaustive MOGA hyperboxes filled by the 
test case. Therefore, a complete frontier that is captured with a 
smaller number of evaluations than the exhaustive MOGA is 
inherently more effective. 
 
The ability to determine the true Pareto frontier of a problem 
allows for the generation of a Technical Feasibility Model.  
However, the feasibility of a test point and its optimality with 
respect to the Pareto frontier is only a portion of the 
information needed in the preliminary design process.  
Mapping a set of technical specifications to their location in the 
design space provides invaluable insight into how the system 
behaves, and how it will react to change.  Mapping from the 
performance to design space is not one-to-one, however, and 
becomes a non-trivial task.  An approach to address this issue is 
outlined in the next section. 
 
4.0 PERFORMANCE TO DESIGN SPACE 

MAPPING 
 

Development of the Pareto frontier representation allows the 
designer to determine if a new preliminary design concept is 
feasible and optimal.  However, this information is incomplete, 
as it provides no knowledge of the design variables that 
compose that design.  Understanding the relationship between 
the performance and the design space is the next logical 
progression in developing a preliminary design within the 
TFM. 
 
The primary goal of this part of this sectiom is to determine 
corresponding design variable information given a desired set 
of performance values for a multi-objective problem. Design 
variable information is desired in the form of a mean value and 
a design tolerance to allow for robust design. For the purpose of 
this study, indifference thresholds that have been defined earlier 
are used for the performance space. Using the indifference 
thresholds to establish the discretization sizes for each 
objective, the performance space is divided into a collection of 
hyperboxes as discussed earlier for the convergence approach. 
 
 Each performance space hyperbox maps to some region of the 
design space that is also discretized into hyperboxes. In order to 

determine the corresponding design variable configuration for a 
given set of performance measure values, the hyperbox 
corresponding to the performance values is identified and 
mapped back to a design space hyperbox. The centroid of this 
mapped hyperbox is the design that would be used to obtain the 
desired performance measures, with the design tolerance range 
determined from the span of the hyperbox. The nature of 
mapping between performance space hyperbox and design 
space hyperbox can be of three types as discussed below.  
 
Type 1: Individual Performance space hyperbox maps to one 
design space hyperbox: In this case, the centroid of the design 
space hyperbox is the design variable vector and the tolerance 
is half the discretization range. This is shown in Figure 5.  

 

 
Figure 5. One Performance Space Hyperbox Mapped to 

One Design Space Hyperbox 

 
Type 2: Performance space hyperbox maps to multiple, 
adjacent design space hyperboxes: In this case, a hyperbox can 
encompass all the mapped adjacent hyperboxes. The design 
variable values correspond to the centroid of this overlapping 
box with the tolerance values determined from the extremes of 
the enveloping hyperbox. This is shown in Figure 6. 
  

 
Figure 6. One Performance Space Hyperbox Mapped to 

Multiple Adjacent Design Space Hyperboxes 

 
 
Type 3: Performance space hyperbox maps to multiple, non 
adjacent design space hyperboxes. As shown in Figure 7, one 
performance space hyperbox maps to different design space 
hyperboxes that are spaced out in the design space. It is 
hypothesized that it is meaningful to place an overlaying 
hyperbox over the scattered mapped design space hyperboxes. 
To validate this hypothesis, the following study is carried out. 
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Figure 7. One Performance Space Hyperbox Mapped to 
Multiple, Non-Adjacent Design Space Hyperboxes 

 
For a set of non adjacent, mapped design space hyperboxes, a 
hyperbox is placed in order to envelope these hyperboxes. 
Three design points are selected from this hyperbox and 
evaluated to determine their objective function values. If the 
evaluated objective function values fall into the same 
performance space hyperbox from where the design space 
hyperboxes were originally mapped, the hypothesis is assumed 
validated. The three points selected are the center of the box, a 
point corresponding to a quarter of the way in all dimensions of 
the hyperbox, and a point corresponding to three quarters of the 
way in all dimensions of the hyperbox. The 2-D representation 
is shown in Figure 8. 

 

 
Figure 8. Determining Performance Space Hyperbox for 

Test Points in Overlaying Hyperbox 

These three points generated shown in Figure 8 are evaluated to 
determine the corresponding objective function values. The 
objective function values are converted to indices that represent 
hyperboxes in the performance space.  The performance space 
hyperboxes corresponding to these points are compared to the 
original Pareto frontier hyperboxes, and an exact or adjacent 
match is found.,  
 
The rationale in doing so is that a design that maps to an 
adjacent hyperbox might be very close to the original hyperbox 
in terms of actual objective function values. Additionally, it is 
ascertained that if a large number of designs (but not the entire 
set) map to the original or its adjacent performance space 
hyperbox, the hypothesis of placing an overlaying hyperbox in 
the design space is validated. This scenario is depicted in 
Figure 9 below. 
 

 
Figure 9. Test Point Mapping to Performance Space 

Hyperbox Adjacent to Original 

Thus, for Type 3 mapping, that is mapping of one performance 
space hyperbox to multiple, non adjacent design space 
hyperboxes, it is shown that a larger, overlaying hyperbox can 
be placed over all the design space hyperboxes. The design 
variable values and tolerances correspond to the center of this 
overlaying hyperbox. The procedure to determine the design 
variable values for a given set of performance measures from 
the determined mapping is described as follows: 
 
a. For the given performance measure values, use the bounds 

of the objective function values obtained from the MOGA 
and chosen discretization size to determine the 
performance space hyperbox indices. 

 
b. Compare indices of given performance space measures to 

existing indices in mapping data sheet. 
 
c. Obtain design variable values and tolerances for matching 

performance space hyperbox. 
 
An important point of note here is that this map only contains 
indices of performance space hyperboxes that are populated 
with Pareto optimal designs. The rationale behind using just the 
Pareto optimal hyperboxes is the same as mentioned in the 
background section. Since the given performance measure 
values are known to maximize customer satisfaction, the point 
is assumed to be in the region of the Pareto set. Therefore, only 
design variable values for designs with performance metrics in 
the vicinity of the Pareto set are returned from this mapping 
study. For the Technical Feasibility Model, this mapping is 
critical since knowledge of the design variable values for a new 
design that is feasible in the engineering domain is obtained 
from it.  
 
Now that the technical information for this paper has been 
presented, this work is applied to a simple case study problem 
involving 2 design variables and 3 objective functions. 
Convergence behavior and mapping studies are carried out for 
this problem and the results are presented in the next section. 
 
5.0 CASE STUDY 

 
The methods presented in the previous sections are developed 
for application to large, complex, multiobjective optimization 
problems. As part of this work, a Technical Feasibility Model 
was developed in conjunction with the General Motors R & D 
Center to test the feasibility of potential new automotive 
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designs. This problem involved 5 objective functions, 11 design 
variables and 3 constraints. However, in order to present 
complete details of the mapping and convergence studies and to 
be able to visually represent the results, a simple 3 objective 
problem with 2 design variables and no constraints is selected 
as a case study for this paper. Though this problem is simplistic 
in nature, it exhibits the necessary properties of problems for 
which the technology in this paper has been developed. The 
multiobjective problem used is stated in Eq. (2) below. 
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The design space is divided into discrete regions; each sized 0.1 
units for each design variable. The bounds for the objective 
function values are determined from the MOGA results.  These 
bounds are shown in Table 1. 
 

 f1 f2 f3 

Lower Bound 0.0041 1.0006 2.0000 

Upper Bound 4.0243 5.1950 4.0794 

Table 1. Upper and Lower Bounds on Objective Functions 

The results of the convergence and mapping studies are 
discussed next. In Sections 5.1, the issue of convergence of the 
MOGA to the Pareto set is studied for this case study problem 
while in Section 5.2 the mapping of the 3-D objective function 
space to the 2-D design space is studied.  
 
5.1 RESULTS: CONVERGENCE  

 
The generation of the Pareto frontier was completed using 
10000 unique design evaluations.  This number was selected 
since a high fidelity surface for gap analysis and surface fitting 
was required.  For this simple problem, this analysis could be 
completed without much computational expense.  However, for 
more complex problems, this may be infeasible due to time 
and/or computational constraints.  Using this frontier as our 
exhaustive sampling of the problem, 6829 non-dominated 
designs were found.  Next, a discretization size of 0.2 was 
selected for all objectives.  Using this discretization size, the 
6829 unique non-dominated designs were placed into 252 
unique hyperboxes in the performance space.  Figure 10 shows 
a plot of the performance space, where each dot represents the 
centroid of a filled hyperbox of the Pareto frontier. 
 

 
Figure 10. Index Representation of the Pareto Frontier 

The 252 identified hyperboxes represent the target goal of any 
MOGA that is run on this problem.  Obviously, as the 
discretization size changes, so will the number of hyperboxes 
filled by points from the Pareto frontier.  The next step is to 
determine how well MOGA solutions developed using fewer 
evaluations can accurately capture the behavior of the frontier. 
 
To start the convergence study, 150 evaluations are first 
completed to move the initial designs to the boundary of the 
Pareto surface.  These points were evaluated by creating a 
random unique population of size 20, and maintaining a 
constant population across as many generations needed to reach 
150 evaluations.  For this case, 146 non-dominated designs are 
found and are placed into hyperboxes in the performance space.  
These designs map to 62 unique hyperboxes in the performance 
space.  Comparing these 62 hyperboxes to the 252 that 
comprise the Pareto frontier, 52 of the hyperboxes are located 
on the frontier.  Plotting the indices of these hyperboxes in the 
performance space, Figure 11 shows the representation of the 
true frontier after 150 evaluations.   
 

 
Figure 11. Index Representation of the Frontier after 150 

Evaluations 

Though the surface in Figure 11 is sparsely populated, the 
hyperboxes that have been identified are scattered across the 
entire representation of the frontier.   
This data is now used as the starting point for the second phase 
of the convergence study.  Using these designs as the initial 
population, new instances of the MOGA are created that have a 
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different number of total evaluations as stopping criteria.  For 
this paper, 5 different cases are investigated.  These MOGAs 
are designed to terminate after 500, 1000, 2000, 5000, and 7500 
total evaluations.  After the maximum number of allowed 
evaluations has been reached, the non-dominated points are 
placed into the appropriate hyperboxes.  These hyperboxes are 
then compared to the exhaustive MOGA.  Those hyperboxes 
that have the same index are recorded and are considered to 
represent the true Pareto frontier.  The results of this analysis 
for the case study problem are shown in Figure 12. 
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Figure 12. Number of Hyperboxes Filled as Evaluations 

Increase 

The data in Figure 12 presents important information regarding 
the convergence of the MOGA.  Completing only the first 150 
evaluations – and creating the initial population used for the 
result of the studies – nearly 21 percent of the 252 hyperboxes 
comprising the Pareto frontier has been captured.  At 500 total 
evaluations, nearly half of the hyperboxes that compose the 
Pareto frontier are filled by at least one design.  Nearly 82 
percent of the frontier has been captured by 2000 evaluations, 
and increasing the number of evaluations by another 250 
percent only yields an extra 9 percent of the entire surface.  By 
7500 evaluations, roughly 93 percent of the Pareto frontier has 
been identified.  Figure 13 demonstrates how the entire frontier 
of this problem is gradually accounted for, and begins to level 
off, as the number of evaluations increases. 
 
These results show that a large number of evaluations can 
potentially be saved while still capturing the behavior of the 
frontier.  However, this problem only contains three objective 
functions comprised of two design variables, and no 
constraints.  A more challenging problem may not (for example 
the GM problem on which this was initially tested) capture 
such a large portion of the Pareto frontier in a small number of 
evaluations.  Added objectives, design variables, and 
constraints, make developing the solution computationally 
more expensive.  Therefore, it may be necessary to modify the 
definition by which an exhaustive MOGA hyperbox can be 
considered to be captured.   
 
 

 
500 Evaluations 

 
1000 Evaluations 

 
2000 Evaluations 

 
5000 Evaluations 

 
7500 Evaluations 

Figure 13. Index Representation of the Frontier at Different 
Evaluation Limits 

One of the most powerful aspects that these results do not take 
into consideration is the hyperboxes that are adjacent to the 
exhaustive MOGA hyperboxes.  Using different adjacency 
constraints, it becomes possible to provide more information 
about how well the different numbers of evaluation cases 
capture the behavior of the exhaustive MOGA frontier. 
 
As the performance space for this system is three-dimensional, 
adjacency can occur in more than the standard two-dimensional 
space.  Two objects can be considered adjacent so long as the 
absolute difference in any given dimension is no greater than 
one.  Using this rule, Figure 14 shows the first four levels of 
adjacency possible in an n-dimensional space.  The first level of 
adjacency is when all indices of the two hyperboxes being 
compared are the same in all dimensions.  When the two 
hyperboxes compared are the same in all but 1 dimension, the 
two hyperboxes that are adjacent share a common plane, or 
face.  When the indices comparison holds for all but 2 
dimensions, the two compared hyperboxes share a common 
edge.  Finally, when the indices of the hyperboxes are the same 
in all but 3 dimensions, the two compared hyperboxes share 
only a common point.  This concept can be expanded into n-
dimensional space, as a rule of thumb for considering how 
much flexibility in adjacency an engineer is willing to allow. 
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Exact All but 1 dimension

All but 3 dimensionsAll but 2 dimensions

Exact All but 1 dimension

All but 3 dimensionsAll but 2 dimensions  
Figure 14. Levels of Adjacency 

 
Applying the different adjacency constraints to the analysis 
allows for an exhaustive MOGA performance space hyperbox 
to be considered captured as long as a hyperbox from a MOGA 
test case is adjacent. As the performance space for the problem 
investigated here is only three-dimensional, the first four levels 
of adjacency are the only applicable cases.  The data for this 
analysis is presented in Figure 15. 
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Figure 15. Convergence Data 

 
From Figure 15, it can be seen that for the larger evaluation 
cases, implementing any level of adjacency corresponds to all 
252 hyperboxes of the Pareto frontier being captured.  For the 
500 and 1000 evaluation cases, allowing for one level of 
adjacency results in a 200 and 150 percent increase 
respectively, in captured frontier hyperboxes.  Allowing for two 
levels of adjacency, both the 500 and 1000 evaluation cases 
fully capture the behavior of the Pareto frontier.  Allowing any 
level of adjacency significantly increases even the 150 
evaluation case, demonstrating the degree to which the 
solutions for that MOGA run were scattered over the frontier. 
 
Viewing the performance space as a series of hyperboxes 
allows for the possible reduction in total evaluations needed by 
a MOGA to effectively capture the behavior of the Pareto 
frontier.  While a hyperbox may be filled when using a smaller 
number of evaluations, the number of designs located in each 
hyperbox will be less than seen in the exhaustive MOGA.  
However, such an advantage plays a significant role in a larger, 

more complex problem.  To further decrease the needed 
number of evaluations, incorporating different levels of 
adjacency provides the ability to capture a greater percentage of 
the frontier.  As demonstrated in this problem, 2000 evaluations 
with an analysis of one level of adjacency are as effective in 
capturing the behavior of the Pareto frontier as the exhaustive 
MOGA case of 10000 evaluations.  This is a significant 25 
percent reduction in needed evaluations, which may prove 
invaluable as computational time and expense for system 
analyses increases. 
 
The advantage of convergence can clearly be seen for a higher 
dimensional problem, as shown in Figure 16.  This is the 
problem posed by General Motors, consisting of 5 objective 
functions, 10 design variables, and 3 constraints.  The 
exhaustive MOGA for this study used 80,000 design 
evaluations, an obvious increase from the 10,000 evaluations 
needed to capture the frontier of the example problem.  Here, 
the 20,000 evaluation case could exactly capture only 20% of 
the hyperboxes of the Pareto frontier.  Allowing for the first 
level of adjacency, the different cases captures at least double 
the original amount of frontier hyperboxes.  Increasing the 
levels of adjacency allows a significant number of hyperboxes 
to be captured, reducing the need for an exhaustive number of 
evaluations and returning a suitable frontier representation. 
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Figure 16. Convergence Data for the GM Problem 

 
The study of convergence in this section was aided and 
completed with the application of discretizing the performance 
space into a collection of hyperboxes.  In the next section, the 
issue of mapping from the performance space to the design 
space is addressed with the help of discretizations within the 
design space. 
 
5.2 RESULTS: MAPPING  

 
For the mapping study, the 3-D performance space is also 
discretized into equal sized hyperboxes, each side having a 
length of 0.2 units. Using this discretization size and the bounds 
listed in Table 1, a total of 4851 performance space hyperboxes 
exist of which 252 are populated with Pareto points as seen in 
the convergence study. Some important mapping measures 
determined in this study are presented in Table 1. 
 



 9  

Number of Performance Space Hyperboxes 
containing one design mapping to ONE design 
variable hyperbox (contains only one design 
point) 

21 

Number of Performance Space Hyperboxes 
containing more than one design mapping to 
ONE design variable hyperbox 

70 

Number of Performance Space Hyperboxes 
containing more than one design mapping to 
MULTIPLE, adjacent design variable 
hyperboxes 

143 

Number of Performance Space Hyperboxes 
containing more than one design mapping to 
MULTIPLE, non-adjacent hyperboxes. 

18 

Total Number of Performance Space Hyperboxes 252 

Table 1. Mapping Measures Determine from the Mapping 
Study 

The results presented in Table 1 indicate the different mapping 
types discussed earlier. The first two entries in Table 1 
correspond to Type 1 mapping where one performance space 
hyperbox maps to one design variable hyperbox. The first entry 
corresponds to having one design point in the performance 
space hyperbox while the second entry corresponds to multiple 
designs in one performance space hyperbox. The third entry in 
Table 1 is the number of performance space hyperboxes 
corresponding to Type 2 mapping, while the number of 
performance space hyperboxes exhibiting Type 3 mapping is 
given in the fourth entry. The total number of populated 
hyperboxes is listed in the last entry. In addition to the numbers 
presented in Table 1, the results of this study also provides a 
map (a data spreadsheet) containing indices of the 252 
performance space hyperboxes with the corresponding design 
variable values and respective tolerances. The procedure to 
determine the design variable values for a given set of 
performance measures from the determined map has been 
described earlier and is applied here to an example. 
 
Consider a hypothetical design with performance values given 
as shown in Eq. (3). 
 
  (f1, f2, f3) = (0.8, 2.75, 2.33)   (3) 
 
It is desired to determine the design variable values and 
corresponding tolerances that would result in the above 
performance measures. It is important to note that for the given 
case study problem, the design variable values can be easily 
backed out from the analytical expressions given in Eq. (2). 
However, the studies presented in this paper are applicable for 
problems that are inherently large in terms of number of 
objective functions, design variables and system constraints and 
also include computationally intensive analyses that need to be 
performed. For this example problem, design variable 
information for the given set of performance values is obtained 
from the mapping as well as computed analytically from the 
problem definition and the two results are compared. The steps 
listed at the end of Section 4 are used first to determine the 

design variable information from the results of the mapping 
study. 
 
a. Use bounds and discretizations to determine indices of 

Performance space hyperbox: Using the bounds of Table 1 
and discretization size of 0.2, the indices for the given set 
of performance values are computed and result as (4, 9, 2). 

 
b. Compare indices to performance space indices: Comparing 

the indices (4, 9, 2) to the results of our study, it is 
identified that the given performance values lie in 
hyperbox number 71, out of the possible 252. 

 
c. Determine the design variable information: Reading off the 

design variable values from the data obtained from 
mapping, the design variable values are given in Eq. (4). 

 
  )05.025.0,05.045.0(),( ±±=yx  (4) 

 
Thus, without going back to the analytical functions that form 
the system analyses, design variable information is obtained for 
a new design with desired set of performance values. 
Computing the design variable values analytically, the result 
obtained is shown in Eq. (5). 
 
  )2375.0,4675.0(),( =yx  (5) 

 
As seen from Eq. (5), the design variable values obtained 
analytically lie in the tolerance range specified by the mapping 
results. For computationally intensive problems, determining 
design variable values without having to run the system 
analyses again is extremely useful. The mapping of the 
performance to design space for the given point is shown in 
Figure 17. 
 

Performance to Design 
Space Mapping

 
Figure 17. Performance to Design Space Mapping for Test 

Point 

In Figure 17, the graph on the left is the 3-D Performance space 
with the centroid of populated Performance space hyperboxes 
shown in blue while the test point is shown in black. The graph 
on the right is the 2-D design space again with the design 
variable values for the Pareto points in blue and the test point 
shown as a black inverted triangle. All information for Figure 
17 is derived from the data obtained in the mapping study. 
 
Thus, in conclusion, it is seen that within the given tolerance, 
the mapping study is able to provide useful design variable 
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information given a set of specifications on objective function 
values. In addition, this is done without having to go back to 
the analyses and back solving the objective functions to 
determine the design variable values. This tool is even more 
useful when the objective functions are not analytical functions 
but values obtained from a black-box like analyses system 
where mathematical functions are not available to solve for the 
design variable values.  To aid in the preliminary vehicle design 
process, the TFM incorporates feasibility assessment, 
optimality, performance to design mapping, and convergence 
information into a single, automated tool.  This has been very 
valuable in developing and studying the problem posed by 
General Motors.  In the next section, some conclusions and 
areas of future work for this research are presented. 
 
6.0 CONCLUSIONS AND FUTURE WORK  

 
In this paper, studies have been presented to analyze the 
convergence behavior of a Multi-Objective Genetic Algorithm 
by reducing the number of function evaluations that can be 
performed. Though the process is dependent on the application, 
it can be concluded that a set of non dominated solutions can be 
obtained in place of the true Pareto set using a smaller number 
of function evaluations. This is achieved by dividing the 
MOGA into two steps, where the first step has the MOGA 
using a part of the available function evaluations to cluster 
around one region of the Pareto set and the second step uses the 
remaining available function evaluations to populate the 
remaining region of the Pareto surface. 
 
This paper also includes a study of the mapping between the 
performance and design space. It is shown that for a new design 
that is close to the Pareto solution set, design variable values 
and corresponding tolerances can be determined without 
computing the analyses again. This is done by dividing the two 
spaces into discrete regions of indifference called hyperboxes 
and studying the relationship of the hyperboxes in the 
performance and design spaces. 
 
Sources of future work for this research include investigating 
methods for convergence of the MOGA without explicitly 
running the algorithm exhaustively and having a representation 
of the “true” Pareto set. This would include the development 
and use of metrics that assess the goodness of a set of non 
dominated designs obtained from a smaller number of function 
evaluations. Additionally, the performance to design mapping 
would need to be expanded to include regions away from the 
Pareto set since Pareto optimal design information might not be 
available. This would require meta-modeling techniques that 
generate an approximation of the system analyses and can be 
used to obtain more design variable data. 
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