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ABSTRACT* 

Recent advancements in computing power and speed 
provide opportunities to revolutionize trade space exploration, 
particularly for the design of complex systems such as 
automobiles, aircraft, and spacecraft.  In this paper, we 
introduce three Visual Steering Commands to support trade 
space exploration and demonstrate their use within a powerful 
data visualization tool that allows designers to explore multi-
dimensional trade spaces using glyph, 1-D and 2-D histogram, 
2-D scatter, scatter matrix, and parallel coordinate plots; 
linked views; brushing; preference shading and Pareto frontier 
display.  In particular, we define three user-guided samplers 
that enable designers to explore (1) the entire design space, (2) 
near a point of interest, or (3) within a region of high 
preference.  We illustrate these three samplers with a vehicle 
configuration model that evaluates the technical feasibility of 
new vehicle concepts.  Future research is also discussed.   

1 INTRODUCTION 
With recent advances in computing power and speed, 

designers can now simulate and evaluate thousands, if not 
millions, of design alternatives more cheaply and quickly than 
ever before1.  These advancements provide new opportunities 
to revolutionize trade space exploration, particularly for the 
design of complex systems (e.g., automobiles, aircraft, and 
satellites) that consist of multiple, interacting subsystems and 
components that are designed by engineers from a variety of 
disciplines.  The main challenge when designing such systems 
lies in resolving the inherent tradeoffs that exist both within 
and between subsystems and the overall system.  For example, 
an aircraft is composed of the wings, fuselage, engines, and 
countless other subsystems and components.  If we consider 
                                                 

* Please address all correspondences to this author.   
1 While some computer-based simulations may take a long time to run 

(e.g., a crash simulation of a full passenger car takes 36-160 hours to compute, 
according to engineers at Ford Motor Company [1]), metamodeling 
techniques such as response surface models and kriging [2] can be used to 
construct computationally efficient approximations of such simulations and 
then used as a surrogate to generate hundreds, or thousands, of design 
alternatives quickly and cost-effectively. 

the design of the wings, tradeoffs exist between aerodynamics, 
structures, and controls among others, yet wing designers are 
also driven by the goal to reduce the weight of the wing to 
minimize the overall weight of the aircraft.   

Given the complexity and tightly coupled nature of 
complex engineered systems, the following optimization 
problem is frequently used to help resolve these tradeoffs:  

 
 Minimize:  fi(xj)  i = 1, …, m; j = 1, …, n  (1) 
 Subject to: gk(xj) > 0  k  = 1, …, p 
  hl(xj) = 0 l = 1, …, q 
  xj

l.b. < xj < xj
u.b. 

 
where xj are the input variables that the designer can control—
they can vary between a specified lower (l.b.) and upper (u.b.) 
bound—while fi, gk, and hl are the objectives, inequality 
constraints, and equality constraints, respectively, that are 
based on the performance (output) of the system for a given 
set of inputs.  For single objective problems (m=1), solving 
Eq. (1) yields a single design point, the optimum design xj

*, 
while multi-objective problems (m>2) yield a set of non-
dominated designs that are referred to as Pareto points and 
form a Pareto frontier [3].  As a result, research has focused 
largely on novel formulations and algorithms for solving these 
problems (e.g., [4-6]), approximation methods to reduce the 
computational expense of related analyses (e.g., [2,7]), and 
computational frameworks to integrate analyses from multiple 
disciplines (e.g., [8,9]), among other areas.   

Despite these advances, design optimization still has 
many shortcomings and challenges to overcome [10].  Balling 
[11] has noted that the traditional optimization-based design 
process of “1) formulate the design problem, 2) obtain/develop 
analysis models, and 3) exe cute an optimization algorithm” 
often leaves designers unsatisfied with their results because 
the problem is usually improperly formulated: “the objectives 
and constraints used in optimization were not what the owners 
and stakeholders really wanted…in many cases, people don’t 
know what they really want until they see some designs”.  
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Similar findings have occurred in other fields.  For instance, 
Shanteau [12] observed that when people are dissatisfied with 
the results of a rational decision making process, they often 
change their ratings to make it come out the way they want.  
Wilson and Schooler [13] have shown that people do worse at 
some decision tasks when asked to analyze the reasons for 
their preferences or evaluate all the attributes of their choices.   

Consequently, there is an emerging paradigm of design 
exploration whereby designers “shop” for the best solution 
using visualization tools instead of relying solely on 
optimization.  This Design by Shopping process – introduced 
by Balling [11] – allows designers to explore the design space 
first and then choose an optimal solution from a set of possible 
designs after “forming realistic expectations of what is 
possible”.  This approach can be classified as an a posteriori 
articulation of preferences to solve a multi-objective 
optimization [14] in that designers first form their preferences 
based on visualization of the trade space, and then choose an 
optimal design that is based on their formed preference.  The 
basic steps to this approach are shown in Figure 1.  First, a 
simulation model, M, is created to analyze the system being 
designed.  In many cases, this model is a “black box” where 
the relationships between design inputs, X, and performance 
outputs, Y, are not known, where X and Y combine to form 
what we call the trade space, Z = [X MY]T.  Experiments are 
then run to simulate thousands of design alternatives by 
varying X and storing the corresponding values of Y for each 
alternative.  Interactive visualization tools are then used to 
explore the trade space to find the most-preferred point Z*.   

1.1 Review of Related Work 
Early work in engineering design sought to support this 

type of approach concentrated on virtual reality to visualize 
design alternatives.  Spherical mechanism design, for instance, 
has significantly benefited from virtual reality [15-17], as have 
large-scale manufacturing simulations [18,19], fluid mixing 
simulations [20], and a variety of other engineering design 
problems [21].  Many researchers have examined effective 
interface development for virtual environments [20,22-24], but 
most of these virtual environments do not support trade space 
exploration since they are typically intended to visualize a 
single point solution, not explore the entire trade space.  Cloud 
Visualization [25], Visual Design Steering [26-28], and the 
U.S. Naval Research Laboratory’s visual steering methods in 
their Virtual Reality Lab and High Performance Computing 
Center [29] are some exceptions to this.  For instance, Cloud 
Visualization [25] displays the input and output spaces of an 
engineering design problem using linked scatter plots, and 
points within the scatter plots can be shaded to identify if a 
design is feasible, infeasible, and Pareto optimal.  Recent 
extensions to this work include BrickViz, which allows users 
to group uncertainty-related data into “bricks” to facilitate 
visualization [30] as well as novel methods to simplify the 
visualization of n-dimensional Pareto frontiers [31].  In the 
fields of data mining and knowledge discovery, existing 
software applications that offer multi-dimensional 
visualization capabilities for trade space exploration include 
Miner3D, Spotfire’s DecisionSite, XmdvTool, and GGobi – 
the capabilities of each are reviewed elsewhere [32].   
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Figure 1.  Typical Approach to Trade Space Exploration 
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In the visualization community, interactive optimization-
based methods fall mainly into the area of computational 
steering whereby the user (e.g., a designer) interacts with a 
simulation during the optimization process to help “steer” the 
search process toward what looks like an optimal solution.  
The designer observes some sort of a visualization of the 
optimization process and then uses intuition, heuristics, or 
some other method to adjust the design space to move toward 
something that may not have been intuitive at the beginning of 
the simulation.  For instance, Wright, et al. [33] applied 
computational steering methods to the geometric and material 
design of glass for a furnace.  Kesavadas and Sudhir [19] 
created large-scale manufacturing “simulations on the fly” by 
allowing users to make quick changes and continue with the 
simulation.  Messac and Chen [34] proposed an interactive 
visualization method based on Physical Programming [35], 
where the progress of the optimization is visualized – but not 
steered – throughout the design process, not just at the 
beginning and end.  Likewise, Visual Design Steering and 
Graph Morphing [26-28] allow users to stop and redirect the 
optimization process to improve the solution; however, their 
visualization capabilities are currently limited to 2-D and 3-D 
representations of constraints and objectives.   

 
1.2 Overview of ARL Trade Space Visualizer 

To support trade space exploration, researchers at the 
Applied Research Laboratory (ARL) and Penn State have 
developed the ARL Trade Space Visualizer (ATSV) [32,36-
38], a Java-based application that displays multi-dimensional 
trade spaces using glyph, 1-D and 2-D histogram, 2-D scatter, 
scatter matrix, and parallel coordinate plots, linked views, and 
brushing – some examples are shown in Figure 2.  The glyph 
plots have been developed on top of the Visualization Toolkit 
(VTK), an open source application that supports interactive 3-
D plots within a Java application [39].  VTK provides the 
capability to view plots in 3-D stereoscopic mode, which can 
then be used within advanced visualization and virtual 
environments as desired.  The ATSV is developed entirely in 
Java, making it cross-platform compatible unlike most 
commercially available software. 

 

Scatter Matrices

Histograms

3D Glyph Plots

 
Figure 2.  Three Views of Data in the ATSV 

In addition to offering these capabilities for visualizing 
multi-dimensional data, the ATSV provides data analysis tools 
such as brushing [40], linked views [41], Pareto frontier 

display, preference shading, and data reduction and zooming 
methods to facilitate a design “shopping” process as shown in 
Figure 3.  The ATSV can also input trade spaces where 
individual designs are tagged with additional files, and when 
queried, these files (e.g., a 3-D solid model of the system) can 
be displayed as seen in the middle right of Figure 1.   

 

 
(a) Linked views that display the same brush settings 

 
(b) Pareto frontier display (+) and preference shading 

Apply Brush
Rescale Trade Space 

Based on Brush

 
(c) Using brushing to zoom in within the trade space 

Figure 3.  Examples of Data Analysis Tools in ATSV 

The remainder of this paper is organized as follows.  In 
the next section we introduce Visual Steering Commands to 
support trade space exploration.  We also define three user-
guided samplers that enable designers to explore (1) the entire 
design space, (2) near a point of interest, or (3) within a region 
of high preference.  These three samplers are then illustrated 
in Section 3 using a vehicle configuration model that evaluates 
the technical feasibility of new vehicle concepts.  Closing 
remarks and future research are discussed in Section 4. 
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2 VISUAL STEERING WITH SAMPLERS 
Before proceeding further, we first define the underlying 

goal in trade space exploration as it differs from optimization.  
We assume the least informative starting point where the 
decision-makers have no knowledge of their preference on Z 
or the relationships in M.  As they explore the trade space, 
they will simultaneously form their preference while searching 
for the most preferred point in the trade space.  We further 
assume that there exis ts a utopia point, Z*, that the decision-
makers would choose from Z if they had unlimited ability to 
explore the trade space completely.  Recognizing the finite 
computing power available and the cost of search time, the 
goal is to have the decision-maker(s) choose a point Z+ as 
close as possible to Z* while minimizing the time to arrive at 
the choice of Z+.  This differs from optimization in that the 
decision-makers’ preference is not known a priori or may 
change as a result of information gained during the exploration 
process, sending the search in an entirely different direction.   

With this in mind, we are developing Visual Steering 
Commands that help decision-makers form their preference 
while exploring the trade space (i.e., “shopping”) to focus in 
on regions/points of interest as their preference sharpens.  In 
this paper, Visual Steering Commands are embodied in three 
user-guided samplers that are created to sample (1) the entire 
design space, (2) near a point of interest, or (3) within a region 
of high preference.  As echoed in the reinforcement learning 
literature [42], we have noticed a basic dichotomy when using 
Visual Steering Commands: (i) those that explore the trade 
space by broadly searching it and (ii) those that exploit 
knowledge gained during trade space exploration to guide and 
narrow the search.  Initially users start out by conducting a 
broad search, then begin exploring localized regions of the 
trade space to increase knowledge of the underlying 
relationships, finally focusing their search in a region 
potentially containing Z*. When viewed in this light, the first 
sampler supports exploration of the entire trade space (case i) 
while the second two exploit knowledge about points or 
regions of interest to guide the sampling process (case ii).  
Descriptions and examples of each follow. 

1) Design Space Sampler: The design space sampler 
randomly samples over the multi-dimensional hypercube of X.  
This sampler performs a Monte Carlo simulation on the inputs 
of the simulation model, M, where each input may have a 
uniform, normal, or triangular distribution.  The sampling 
range on any input variable can be reduced by brushing in the 
ATSV to “zoom in” on regions of interest as additional 
information becomes available.  An example is shown in 
Figure 4 where Figure 4a shows 100 samples randomly 
distributed based on the original bounds (0 < A,B < 1) while 
Figure 4b shows the next 100 samples in the reduced region of 
interest (0 < A,B < 0.5).  This sampler is usually the first step 
in the exploration process in that it initially populates the trade 
space so that users can start to visualize tradeoffs and trends 
within the data.  While more advanced sampling strategies can 
be employed (e.g., Latin Hypercubes [43], Optimal Designs 
[44], and Uniform Designs [45]), we have repeatedly found 
that random sampling is more advantageous when exploring 
the trade space visually since any structure that occurs in the 
sample data is an artifact of the model M (potentially valuable 
information to a decision maker), rather than being induced by 
the sampling process [46]. 

 
(a) 100 samples in A,B∈ [0,1]    (b) 100 new samples in A,B∈[0,0.5] 

Figure 4.  Design Space Sampler Examples 

2) Point Sampler: The point sampler populates new 
sample points near a user-defined point within the trade space, 
and is most often used to allow the user to fill in “gaps” in the 
trade space.  The point sampler is specified in the ATSV 
interface with a graphical icon  that is called an Attractor 
because it identifies an n-dimensional point in the trade space 
that is of interest to the user.  Since the user-specified point in 
the trade space, Z, can consist of any combination of the 
inputs, X, and the outputs, Y, and can consist of discrete and 
continuous variables, we use an evolutionary algorithm, 
specifically Differential Evolution [47], to guide the sampling 
process.  The fitness of each new sample point, Zi_sample, is 
based on the normalized Euclidean distance from the specified 
n-dimensional point (i.e., the attractor), Zi_attractor:   

 Fitness = 

2

_ _

1 _

n
i sample i attractor

i i attractor

Z Z
Z=

 −
   

∑  (2) 

As the population evolves, the samples get closer and closer to 
the user-specified point.  As shown in Figure 5, the attractor is 
placed in the 2-D trade space (see Figure 5a) and additional 
samples are slowly added near the attractor (see Figure 5b).   

To illustrate how this sampler works, Figure 6 shows how 
the samples “evolve” toward the user-defined attractor in the 
trade space.  Each generation is color coded where the initial 
sample points are shown in gray, the first generation is shown 
in blue, and subsequent generations are coded based on the 
scale at the bottom of the figure.  The last generation is shown 
in red, and nearly all of these points lie close the center of the 
attractor icon.  The user specifies the population size and 
number of generations before executing the point sampler, and 
the user can stop the point sampler at any time s/he desires.  
The example in Figure 6 used a population size of 25 and ran 
for 7 generations for a total of 175 additional sample points.  
As seen here, we have found that even with a relatively small 
population size, the sample points start to cluster around the 
attractor within just a few generations.  We are currently 
performing studies to tune the evolutionary algorithm (e.g., 
population size, number of generations, selection and cross-
over strategies, and mutation rates) for problems of varying 
size and complexity – and for attractors placed in 2-D, 3-D, 
…, n-D trade spaces – to improve their performance and 
provide guidelines to the user.  Finally, we note that we do not 
discard any points in the early generations even though many 
are far away from the user-specified point.  This is in line with 
the concept that users are simultaneously forming their 
preference while searching the trade space.  The imposition of 
additional constraints (e.g., maximum weight of satellite due 
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to launch vehicle restriction, maximum beam of a ship) could 
eliminate all points near an attractor, leaving the trade space 
unpopulated if all points were not maintained and stored.   

 

 
(a) Original 100 sample points 

 
(b) Sample points move toward user-defined attractor 

Figure 5.  Point Sampler Example 

 
Figure 6.  Samples Evolving toward the Attractor 

3) Preference-based Sampler: The third sampler is a 
preference-based sampler that populates the trade space in 
regions that perform well with respect to a user-defined 
preference function.  New sample points are generated using 
the Differential Evolution algorithm, but the fitness of each 
sample point is defined by the user’s preference structure, 
expressed currently as a linear weighting over Z [32]: 

 Fitness = j

n

j
jZw

pref

∑
=1

 (3) 

where npref is the number of trade space variables, Zj, to which 
the user has assigned a preference weight, wj. As shown earlier 
in Figure 3b, the ATSV already supports the ability to display 
preference structures, and this preference structure is retrieved 
directly from ATSV and used in the evolutionary algorithm.   

An example of the preference-based sampler is shown in 
Figure 7.  Starting with 100 sample points (see Figure 7a), we 
specify our preference to maximize both objectives with equal 
weighting using the Brushing Controls (see Figure 7b).  The 
preference-based sampler is then exe cuted for 7 generations 
using a population size of 25.  The results are shown in Figure 
7c where the concentration of points increases in the direction 
of preference, namely, the upper right hand corner of the plot.  
As with the point sampler, we are currently performing studies 
to fine-tune the underlying algorithm based on the overall 
problem size and its complexity as well as the number of trade 
space variables on which the user has specified a preference. 
 

 
(a) Original 100 sample points with preference shading 

 
(b) Brush settings indicating preference structure 

 
(c) Samples increase in direction of preference 

Figure 7.  Preference-Based Sampler Example 

Direction of 
Preference  
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Implementation of these three samplers occurs through an 
Exploration Engine that mediates between the ATSV and the 
simulation model, M, as shown in Figure 8.  To interface with 
this Exploration Engine, the ATSV was modified to: 
• add user controls to specify samplers in the ATSV, 
• allow for continuous display of new design points as the 

Exploration Engine generates them, and 
• create a message passing protocol for providing steering 

commands from the ATSV to the Exploration Engine. 
While the implementation of Exploration Engine and samplers 
has been described within the context of the ATSV, they are 
readily applicable to any visualization software that supports 
trade space exploration.  An example application follows. 
 

Visualization
Software
(ATSV)

Simulation
Model (M)

Supervisor

Data
Storage

Design Space
Sampler

Point Sampler
(Attractor)

Preference -
Based Sampler

••
•

User -Guided
Samplers:

Design Space
Sampler

Point Sampler
(Attractor)

Preference -
Based Sampler

••
•

User -Guided
Samplers:

Exploration
Engine

 
Figure 8.  Implementation of Exploration Engine 

3 VEHICLE DESIGN EXAMPLE 

3.2. Problem Description 
To demonstrate the use of Visual Steering Commands and 

the three samplers for trade space exploration, we linked the 
Exploration Engine with a simulation model derived from an 
existing vehicle configuration model developed to evaluate the 
technical feasibility of new vehicle concepts [48-50].  The 
model includes five measures of performance – acceleration, 
fuel economy, and measures of interior accommodation – and 
eleven high-level vehicle design parameters, including ten 
continuous variables that define overall exterior dimensions 
and positions of the occupants, and one discrete variable that 
specifies the vehicle’s powertrain.  This vehicle configuration 
model also computes vehicle mass, which is neither a design 
variable nor a performance objective as customers do not 
usually have a preference on the weight of their car; however, 
vehicle mass is a function of many design variables and it 
strongly influences many performance objectives that are 
important to customers (e.g., fuel economy) [50].  As such, 
vehicle mass is an important consideration in preliminary 
vehicle design, and it is therefore desirable to include mass in 
the model.  Finally, we draw a distinction from previous work 
with this model in that we do not restrict ourselves to points 
located in the Technical Feasibility Model (TFM), i.e., the 
Pareto frontier generated from the vehicle configuration model 
(see [50] for a detailed dis cussion on the TFM).  Instead, we 
compute a constraint function, ConVio, which measures the 
total violation of all constraints in the model such that feasible 
points have zero constraint violation and infeasible ones have 
a non-zero value for ConVio.  This  enables us to explore a 
broader range of design points as we search for overall trends 
in the data and underlying simulation model.   

Table 1 summarizes the problem definition that is used 
for this trade space exploration example.  We normalize the 

bounds on the 10 continuous design variables to [0,1] and 
scale the objectives against the baseline model – defined as the 
point Y = (1,1,1,1,1,1) with ConVio = 0 – to protect the 
proprietary nature of the data.  The design variable, H, defines 
the powertrain and can take one of six options: [1,2,3,4,5,6].  
Finally, the preference for each objective is indicated in the 
table, and we only want Obj1 to be smaller than the baseline 
value – larger is better for the other four objectives.  While 
stating these very general preferences beforehand may seem 
counter-intuitive to trade space exploration (i.e., if the 
direction of preference is known for each objective, then why 
not just use a multi-objective genetic algorithm to find the best 
design?), the end goal is to determine the best point, Z+, in the 
trade space, and to do this, we would need, for example, to 
specify weights for each objective if we were to use a 
weighted-sum method to find the best point.  The problem 
arises in that we have no idea what weights to specify at this 
stage of the design process – and any weights that we did 
specify would invariably led to a design that in all likelihood 
was not what we intended to design (see the discussions in 
[10,51]).  We could use a multi-objective genetic algorithm to 
determine the Pareto frontier as was done in earlier work [50]; 
however, that gives us a set of non-dominated designs, not a 
single point, and this is where trade space exploration can 
help, i.e., allow designers to “shop” for the best design.  An 
example of such a shopping process follows.   

 
Table 1.  Vehicle Problem Definition 

Model Inputs 
Variable Lower Bound Upper Bound 

A 0 1 
B 0 1 
C 0 1 
D 0 1 
E 0 1 
F 0 1 
G 0 1 
H 1,2,3,4,5, or 6 
I 0 1 
J 0 1 
K 0 1 

Model Outputs 
ConVio 0 à feasible > 0 à infeasible 
Mass Baseline = 1 Defines weight class 
Obj1 Baseline = 1 Smaller is better 
Obj2 Baseline = 1 Larger is better 
Obj3 Baseline = 1 Larger is better 
Obj4 Baseline = 1 Larger is better 
Obj5 Baseline = 1 Larger is better 

 
3.2. Visual Steering to Design a New Vehicle 

We begin by following the design scenario described in 
[50], namely, starting with 78 different vehicle configurations, 
and we wish to find a new vehicle configuration that improves 
on all objectives simultaneously compared to the baseline 
model, if possible.  After learning how to use the ATSV, the 
Visual Steering Commands, and the three samplers, the 
Vehicle Integration Engineer (VIE) starts by looking at a 
histogram of the initial 78 points (see Figure 9a) to see how 
well they cover the design space, X = {A, B, …, K}.  The VIE 
determines that regions of several design variables (e.g., the 
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middle half of A and E, the upper 3/4 of C, all but the highest 
values of G, etc.) are under-sampled.  The bounds on A-K are 
adjusted as shown in Figure 9b, and 22 new sample points are 
generated using the Design Space Sampler to yield a total of 
100 points.  The updated histogram in Figure 9c shows how 
the sampler has added new points in these specific ranges.  
Upon looking at this figure, the VIE decides that these 100 
sample points are sufficient to start exploring the trade space. 

 

 
(a) Histogram of 78 Initial Vehicle Configurations 

 
(b) Modified Bounds of A-K for Additional 22 Samples 

 
(c) Histograms Updated with 22 New Samples 

Figure 9.  Use of Design Space Sampler to Achieve 
More Uniform Distributions in Design Space 

Next, the VIE plots a scatter matrix of the 100 points, 
which is shown in Figure A in the Appendix, and finds five 
interesting trends in the plot: 
1. Obs. #1: As A increases, Mass increases, and as Mass 

increases, Obj1 increases within each of discrete levels 
that appears.  These discrete levels appear to correlate 
with H, the variable related to powertrain selection, and 
the levels of H also correlate with Obj2, leading to an 
interesting relationship between Obj1 and Obj2.   

2. Obs. #2: Low and high values of A tend to violate the 
constraints (i.e., high values of ConVio) much more than 
the middle of the range. 

3. Obs. #3: B is positively correlated with Obj5. 
4. Obs. #4: J is positively correlated with Obj3. 
5. Obs. #5: K is positively correlated with Obj4.   
Based on these observations, the VIE realizes that B, J, and K 
can be used to improve Obj5, Obj3, and Obj4, respectively; 
so, a 2-D scatter plot of Obj1 vs. Obj2 is created to investigate 
this relationship more (see Figure 10a).  The VIE also assigns 
color to ConVio in this 2-D plot as feasibility is starting to be a 
concern.  Given the preference for low values of Obj1 and 
high values of Obj2, the VIE places the Attractor_1 in the upper 
left corner of the plot and executes the Point Sampler for 6 
generations with a population size of 25 new samples.  Figure 
10b shows the updated plot with these new samples. 

 

 
(a) Placement of Attractor_1 in 2-D Scatter Plot 

 
(b) Updated Scatter Plot after Using Point Sampler 

Figure 10.  2-D Scatter Plot of Obj1 vs. Obj2 
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The VIE is pleased to see more points clustered near the 
attractor as well as the higher concentration of feasible points 
(in dark blue) but is now starting to wonder what is happening 
with Obj3-Obj5.  A scatter matrix of Obj1-Obj5 is created, 
and the VIE places a second attractor in the upper regions of 
Obj3, Obj4, and Obj5 as shown in Figure 11.  The vertical and 
horizontal purple dashed lines that appear in this chart indicate 
where the attractor has not been placed in other plots on this 
chart (e.g., Attractor_1 is defined for Obj1 and Obj2, not Obj3-
5).  This second attractor is used to execute a second Point 
Sampler that runs for 6 generations, each having a population 
size of 25.  The results are also shown in Figure 11 and can be 
observed in the tight clustering of sample points around the 
second attractor.  The VIE notes that new “clusters” appear 
after running this second attractor in the middle region of Obj1 
and the lower and middle regions of Obj2, neither of which 
are very helpful given the preference to minimize Obj1 and 
maximize Obj2.   

Attractor_1

A
ttracto

r_2

Note regions of high point density
 

Figure 11.  Scatter Matrix Showing Obj1-Obj5 

The VIE decides to move to a glyph plot to examine all 
five objectives at once.  In doing so, the VIE takes advantage 
of the strong correlation between Obj3 and Obj5 (seen in 
Figure 11 as well as Figure A) and plots Obj1, Obj2, and Obj3 
on the x, y, and z axes and assigns Obj4 to size where larger is 
better.  ConVio is assigned to Transparency – infeasible points 
are more transparent – and the VIE specifies his preference on 
each objective using the Brush/Preference Controls (see 
Figure 12) so that preference shading can be assigned to color 
in the glyph plot.  Figure 13 shows the resulting plot. 

 

 
Figure 12.  Brush/Preference Controls for Glyph Plot 

 
Figure 13.  Glyph Plot of Obj1-Obj3 with Obj4 = size, 
ConVio = Transparency, Preference Shading = Color 

The VIE is still worried that many points appear to be 
infeasible (i.e., are highly transparent in Figure 13), and a 
Preference-based Sampler is executed to try to obtain more 
feasible points in the region of high preference (red points as 
indicated by the color scale).  This sampler is executed to 
generate another 150 points (6 generations each with a 
population of 25), and the resulting plot that includes these 
new samples is shown in Figure 14.  The VIE is pleased to see 
a higher percentage of feasible points and several more points 
in the preferred region. 

 

 
Figure 14.  Glyph Plot after Preference-based 

Sampling 

The final step in the VIE’s “shopping” process is to use 
the Brush Controls to screen out points that are worse than the 
baseline design.  It turns out that there are no feasible points 
were all of the objectives are improved as desired, and the VIE 
must make a tradeoff between which objectives to improve 
and which to sacrifice.  The VIE learns from brushing the data 
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that it is relatively easy to improve Obj3, Obj4, and Obj5 (by 
increasing the values for B, J, and K as noted earlier), and that 
the real tradeoff occurs between Obj1 and Obj2.  Using the 
Brush Control settings shown in Figure 15a, the VIE reduces 
the points to the few shown in Figure 15b from which a 
promising option is selected: this design sacrifices only 2% in 
Obj1 and Obj2 for a gain of 3%, 9%, and 13% in Obj3, Obj4, 
and Obj5, respectively.  When creating this final glyph, the 
VIE added iso-surfaces to the plot to indicate different weight 
classes based on the vehicle mass and observed that the final 
options fell within one of three weight classes.  This 
information will be useful as different configurations and 
powertrain options are considered during detail design. 
 

 
(a) Brush Controls for Making Final Selection 

 
(b) Resulting Glyph Plot including Mass Contours 

Figure 15.  Selection of Final Vehicle Design Point 

4 CLOSING REMARKS AND FUTURE WORK 
In this paper, we have discussed the need for trade space 

exploration and introduced a set of Visual Steering Commands 
to support the process.  To enable these commands, we have 
defined and implemented three user-guided samplers that 
enable designers to explore (1) the entire design space, (2) 
near a point of interest using an attractor, or (3) within a 
region of high preference as specified by the user.  Finally, we 
demonstrated these Visual Steering Commands to guide the 
trade space exploration process using a vehicle configuration 
model.  Within this context, we also highlighted the features 
and capabilities of our powerful new data visualization tool, 
the ATSV, which offers a multi-dimensional viewing 
capabilities, including any combination of glyph, 1-D and 2-D 

histogram, 2-D scatter, scatter matrix, and parallel coordinate 
plots; linked views; brushing; preference shading and Pareto 
frontier display.   

In reality, the “shopping” example could have proceeded 
in numerous ways using countless different plots and charts.  
Experienced users might prefer to brush the data against the 
baseline vehicle and start “shopping” from there whereas 
novice users might want to gain insight into the model during 
the “shopping” process while also locating the best design.  
The story, as we have told it, is representative of what we have 
observed in industry; however, we have clearly articulated 
each step to demonstrate the Visual Steering Commands, in 
general, and the three samplers, in particular.   

In addition to the ongoing research discussed in this  paper 
(e.g., fine-tuning the evolution algorithm that is driving two of 
our samplers), there are a variety of promising avenues for 
future research.  For instance, the three samplers presented in 
this paper represent our initial attempts at creating Visual 
Steering Commands to guide trade space exploration.  We 
envision a variety of additional samplers such as a Pareto 
Sampler, Most Informative Sampler, Most Uncertain Sampler, 
etc., which support different aspects of the “shopping” 
process.  We also envision a “repeller” that works in the exact 
opposite way as the attractor does in the Point Sampler, i.e., 
generates points that are NOT like the user-specified point.  
We have already encountered several applications working 
with companies where this type of sampler would be useful. 

Fundamentally, specifying a sampler imposes a desired 
distribution of points over Z.  For example, specifying a point 
using the Point Sampler should generate a distribution of 
points around the attractor, where the concentration of points 
decreases as a function of the distance from the sampler, e.g., 
a high concentration of points within +1σdistance, fewer points 
within +2σdistance, and so on.  An important feature is that the 
sampler should, however, continue to generate new points 
across the entire trade space.  It should not generate a series of 
points that converge to the point attractor; instead, it should 
converge to a distribution that is biased around the attractor.  
Similarly, the Preference-Based Sampler should converge to a 
distribution of points that are biased to values of high 
preference yet continue to sample everywhere in the trade 
space.  The refinement of these three samplers is driving 
investigation into the properties of evolutionary algorithms 
and their usage as the underlying sampling engines.  

We are also in the process of interviewing designers, 
engineers, and practitioners to learn more about how they use 
visualization to support decision-making and the capabilities 
that they wished they had for trade space exploration.  One 
example is the capability to visualize the corresponding 
physical geometry for any selected point in the trade space, 
and we are investigating ways to link and quickly render 3-D 
parametric models within ATSV to support this.   

Two underlying assumptions when using Visual Steering 
Commands are that (i) a simulation model, M, is available to 
query and (ii) the analyses are not computationally expensive 
and can be executed in real-time, or sufficiently quickly as the 
case may be.  For case (i), the ATSV was initially designed to 
work with static datasets and can incorporate empirical data, 
as long as it is in tabular format.  If an underlying model does 
not exist, then regression techniques could be used to create 
response surfaces, for instance, based on the empirical data, 
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which could then be “steered” and explored within ATSV.  
Likewise, for case (ii), a variety of metamodeling techniques 
exist that can be used to construct inexpensive surrogates of 
any computationally expensive analyses [2], and these could 
be queried directly by the Exploration Engine when executing 
any of these samplers.  The steering commands could then be 
used to infer regions of interest, which can drive toward 
regions in the trade space wherein the computationally 
expensive analyses are executed next. 

Finally, there is the issue of training users in how to use 
(a) the ATSV and (b) the Visual Steering Commands and 
samplers.  We plan to begin developing videos and training 
protocols to improve proficiency with the ATSV and instruct 
users on how to utilize its visualization capabilities, including 
the Visual Steering Commands and samplers.  Meanwhile, we 
have observed on several occasions that users already familiar 
with the ATSV can quickly learn how to utilize the Visual 
Steering Commands and samplers in the ATSV interface, 
which demonstrates to us that they are fairly intuitive to use.   
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Figure A.  Scatter Matrix of 100 Sample Points 


