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Our goal in this work is to develop analytical tools to support the definition of balanced 
and compatible sets of vehicle specifications in the early stages of vehicle development.  In 
this paper, we discuss the development and application of a Technical Feasibility Model 
(TFM) that may be used in preliminary design to assess the technical feasibility and 
optimality of specified combinations of vehicle performance targets.  For this paper, we have 
exercised the TFM specifically to explore the relationships between vehicle mass, vehicle 
performance measures, (such as acceleration, fuel efficiency, and interior roominess), and 
high-level vehicle design parameters (such as overall exterior dimensions, occupant 
positions, and selection of a powertrain).  The TFM is developed by first applying a Multi-
Objective Genetic Algorithm to a multidisciplinary design framework to generate a set of 
Pareto-optimal design solutions, then applying response surface methods to generate a 
smooth mathematical representation of the Pareto set, and finally using geometric 
construction to analyze the position of a test point relative to the representation of the Pareto 
set.  Results of this analysis include an assessment of the feasibility and optimality of the test 
point as well as a variety of projections from the test point to the representation of the 
Pareto set that may be used to identify opportunities for refining, relaxing, improving, or 
prioritizing performance specifications.  The mapping between performance space and 
design space has been preserved, allowing for investigation of relationships between 
performance specifications and design variable settings. 

In this paper we broadly demonstrate the application of the TFM, beginning with its 
basic capabilities of testing the feasibility of a specified combination of performance 
measures, quantifying the available amount of design freedom for a specified combination of 
performance measures, and quantifying the change in each performance measure required 
to attain a Pareto-optimal solution.  In addition, we will demonstrate how the capabilities of 
the TFM may be leveraged specifically for exploring relationships between vehicle mass, 
vehicle performance measures, and vehicle design parameters by generating response 
surfaces to identify compatible sets of vehicle performance targets at specified levels of 
vehicle mass and quantifying the sensitivity of performance measures to changes in vehicle 
mass.  Collectively, these capabilities make the TFM a powerful tool for managing vehicle 
mass and ensuring vehicle design feasibility in the earliest stages of the vehicle development 
process. 
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I. Introduction 
NE of the fundamental challenges in preliminary vehicle design is developing a design that is both highly 
desirable and technically feasible.  This challenge is compounded by competitive pressures to develop designs 

rapidly, as this both lowers development cost and reduces time to market.  Thus vehicle manufacturers have invested 
considerable effort into developing and applying technologies for rapidly assessing the feasibility of preliminary 
designs.  Virtual design environments1,2 have substantially improved the efficiency of design feasibility assessment.  
Application of approximate models in these environments3,4 has improved efficiency even further.  Application of 
design optimization techniques5 has proven helpful in balancing feasibility and desirability of designs modeled and 
explored in virtual environments.  Some practitioners have found it helpful to generate sets of Pareto-optimal 
solutions6 for both technical and non-technical reasons.  This approach relieves difficulties in formulating objective 
functions.  It also separates the exploration of design efficiency from assessment of the merit of solutions, which 
often facilitates decision-making in the product development process7.   

 
The goal of this research is to explore the culmination of the technical trends in this area; specifically, to 

generate an approximate representation of a set of Pareto-optimal design solutions and to explore its application to 
feasibility assessment and decision-making in preliminary vehicle design.  In this paper, we discuss the development 
and application of a Technical Feasibility Model8 (TFM) that may be used in preliminary design to assess the 
technical feasibility and optimality of a specified combination of vehicle performance targets.  The TFM presented 
in this paper is tailored specifically for exploring the relationships between vehicle mass, measures of vehicle 
performance, and high-level vehicle design parameters. 

II. Model Development 
A TFM is developed by applying a Multi-Objective Genetic Algorithm9 (MOGA) to a multidisciplinary design 

system to generate a set of Pareto-optimal design solutions10,11, fitting a smooth, continuous mathematical 
representation to the performance measures of the Pareto-optimal design solutions, and implementing a 
mathematical algorithm for assessing the feasibility and optimality of a test point relative to the representation of the 
Pareto set.  It is also very desirable, but not necessarily required, to provide means for preserving the correspondence 
between variables in performance space and design space for the Pareto-optimal solutions.  The techniques used to 
develop the TFM presented in this paper are discussed below.  Alternative techniques for TFM development have 
also been explored12. 

A. Model Scope 
The TFM developed in this work spanned five measures of vehicle performance (including acceleration, fuel 

economy, and measures of interior accommodation) and eleven high-level vehicle design parameters (including 
overall exterior dimensions, occupant positions, and specification of the vehicle’s powertrain).  Representation of 
vehicle mass in a TFM poses unique and interesting challenges.  Strictly speaking, mass is neither a design variable 
nor a performance objective; rather, it is a function of many design variables and it strongly influences many 
performance objectives.  Regardless, vehicle mass is an important consideration in preliminary vehicle design and it 
is therefore desirable to represent mass in the TFM.  When mass complements other performance measures included 
in the TFM, representing vehicle mass as a performance measure may seriously compromise the fidelity of the 
approximation of the Pareto set through confounding of model coefficients.  This issue manifested itself during the 
development of this TFM; attempts at including mass as a performance response along with acceleration and fuel 
economy yielded unstable regression models.  For this reason, vehicle mass is represented as a design variable in 
this TFM; thus the mass for any Pareto-optimal combination of performance measures may be queried through 
performance-to-design mapping. 

B. Pareto Frontier Generation 
The generation of the Pareto frontier used in this TFM has been discussed extensively elsewhere8,13 and will be 

reviewed only briefly here.  The performance and design spaces were each discretized prior to generation of the 
Pareto set.  This was necessary not only for application of the MOGA, but also to provide a schema for mapping 
between the performance and design spaces.  Both MOGA efficiency14 and Pareto set quality15-17 were monitored 
throughout generation of the Pareto set.  The most densely populated Pareto set was generated with 20,000 
evaluations of the multidisciplinary design system, although it has been shown that satisfactory results were 
achieved with far fewer evaluations13.  Once generated, the Pareto set was represented with a pure quadratic 
response surface. 
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C. Feasibility Assessment 
Given this representation of the Pareto frontier, the next step in developing the TFM is to define an algorithm for 

determining whether a given test point is feasible, Pareto optimal, or infeasible.  In this work, the feasibility of a 
point in multiobjective performance space is assessed based on its location relative to the utopia point and to the 
Pareto frontier, as shown in Figure 1. 

 
Figure 1.  Geometrical References for Feasibility Testing 

 
The utopia point is defined as the point in performance space that is best in every objective; this point is 

necessarily infeasible whenever the objectives compete.  The feasibility of a test point may be assessed 
geometrically based on its location relative to the Pareto frontier.  First a ray is constructed from the Utopia point 
through the test point.  Next, the distances from the Utopia point to the Pareto frontier and to the test point are 
evaluated.  There are three possible outcomes: 

 
• If the distance from the Utopia point to the test point is greater than the distance from the Utopia point 

to the Pareto frontier intersection point, then the test point is infeasible. 
• If the distance from the Utopia point to the test point is equal to the distance from the Utopia point to 

the Pareto frontier, then the test point is feasible and non-dominated.   
• If the distance from the Utopia point to the test point is less than the distance from the Utopia point to 

the Pareto frontier intersection point, then the test point is feasible and dominated. 
 
A measure of distance from the test point to the Pareto frontier is a by-product of the feasibility test.  However, 

the Surface Intersection Point is not necessarily the closest point to the test point on the Pareto frontier.  Depending 
on the location of the test point relative to the Utopia point and on the curvature of the Pareto frontier in the vicinity 
of the test point, the Surface Intersection Point may be much farther away from the test point than the closest point 
on the Pareto frontier, as shown in Figure 2. 

 
The distance to the closest point on the Pareto frontier might be a more reliable measure of the degree of 

feasibility (or infeasibility) of a design solution than the distance to the Surface Intersection Point.  However, it is 
difficult to interpret either of these measures because both are measured in a non-uniform coordinate system.  This 
measure is only meaningful when rates of exchange between the performance objectives are known throughout the 
entire range of performance space, which is a highly unlikely circumstance. 
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Figure 2.  Surface Intersection vs. Closest Point on the Pareto Frontier 
 
For this reason, the distance from the test point to the Pareto frontier along each individual axis of performance 

is also measured and reported.  These measures of feasibility (or infeasibility) may be interpreted much more easily 
as they represent the change in one performance objective required to reach Pareto optimality when all other 
performance objectives are held constant.  This procedure is illustrated in Figure 3.   A test point with performance 
(F1,F2) is tested for feasibility in a two-objective performance space and is found to be infeasible.  The distances to 
the Pareto frontier are measured along each axis and reported.  To reach the boundary of feasibility, a tradeoff of 
either α units of F1 or β units of F2 is required.    

 

Figure 3.  A Tradeoff in One Objective to Reach Pareto Optimality 
 
Note that while quantification of the change in one performance objective required to reach Pareto optimality 

with all other performance objectives held constant is desirable, it may not always be possible.  Depending on the 
location of the test point and on the local geometry of the Pareto frontier, an orthogonal projection from the test 
point may not intersect the representation of the Pareto frontier within the bounds of performance space.  When this 
occurs, the TFM returns a message that the required tradeoff in said objective to achieve Pareto optimality is not 
available. 

D. Performance-to-Design Mapping 
Another issue addressed in developing the TFM is establishing correspondence between the Pareto-optimal 

solutions in the performance space and the corresponding variables and configurations in the design space.  Mapping 
between performance space and design space is not a new problem in engineering design and has been recognized as 
a challenging task because the mapping can be one-to-many, with one objective function point mapping to multiple 
design points.  If the mapping can be established, however, the knowledge of this correspondence provides valuable 
insight into the robustness of a given combination of performance targets by quantifying the amount of design 
freedom available to the designer for achieving a desired performance. 
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In this work we have approached the mapping of performance space to design space through the following steps: 
 
• Discretize the performance and design spaces using indifference thresholds specified by the designer 
• Represent the Pareto frontier as a collection of elements in the performance space 
• Identify the corresponding elements in design space for each element in the Pareto frontier 

 
When applying this procedure for performance-to-design mapping, the nature of the relationships between a 

performance space element and its corresponding design space elements can be one of three fundamental types: 
 
Type 1: One performance space element maps to one design space .  In this case, the centroid of the design space 

element is the design variable vector and the design freedom is defined to be half the size of the element. This is 
illustrated in Figure 4.  

 

Figure 4.  One-to-One Element Mapping (Type 1) 
 

Type 2: One performance space element maps to multiple, adjacent design space elements.  In this case, one 
super-element may be defined in design space to encompass all the adjacent elements mapped to a single element in 
performance space.  The design variable values for this element are defined as the centroid of the super-element and 
the design freedom is defined to be half the size of the super-element.  This is shown in Figure 5. 

 

Figure 5.  One-to-Many Adjacent Element Mapping (Type 2) 
 

Type 3: One performance space element maps to multiple, non-adjacent design space elements, as shown in 
Figure 6.  In our previous work13, we found it generally acceptable to define one super-element encompassing the 
entire mapped region in design space.  The validity of this procedure may be tested as follows: For a set of non 
adjacent, mapped design space elements, a larger super-element is defined to envelop these elements.  Design points 
from each element are then evaluated; if the objective function values for every element within the design space 
super-element all fall within the same element in performance space, then the design variable and design freedom 
values may be defined in the same manner as for Type 2 mapping. 
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Figure 6.  One-to-Many Non-Adjacent Element Mapping (Type 3) 
 

Collectively, these capabilities make the TFM a powerful tool for managing vehicle mass and ensuring vehicle 
design feasibility in the earliest stages of the vehicle development process.  This will be illustrated in the next 
section through an example of TFM application. 

III. Application 
In our previous work8, we have demonstrated the application of the TFM by testing the feasibility of 

performance specification for 78 late-model sedans.  Encouragingly, all vehicles with specifications within the 
domain of the TFM were found to be feasible, with newer vehicles falling closer to the Pareto frontier and older 
vehicles falling farther from the Pareto frontier.  This exercise helped to establish the credibility of the TFM; 
however, it demonstrated only a small portion of its full capability.  In this section we broadly demonstrate the 
application of the TFM, beginning with its basic capabilities of testing the feasibility of a specified combination of 
performance measures, quantifying the available amount of design freedom for a specified combination of 
performance measures, and quantifying the change in each performance measure required to attain a Pareto-optimal 
solution.  In addition, we will demonstrate how the capabilities of the TFM may be leveraged specifically for 
exploring relationships between vehicle mass, vehicle performance measures, and vehicle design parameters by 
generating response surfaces to identify compatible sets of vehicle performance targets at specified levels of vehicle 
mass and quantifying the sensitivity of performance measures to changes in vehicle mass.   

 
Suppose that a vehicle manufacturer is planning its next-generation entry into a hypothetical midsize car market 

segment.  After careful analysis of marketplace conditions, the vehicle program manager has developed an initial set 
of targets for measures of the vehicle’s interior accommodation, acceleration, and fuel economy.  These targets, 
scaled relative to the performance of the current market entry, are shown in Table 1. 

 

 
Table 1.  Performance Targets for Hypothetical New Product 

 
A vehicle integration engineer (VIE) is tasked with applying the TFM to assess the technical feasibility of this 

point in performance space and finds that, unfortunately, it lies in the infeasible region.  Detailed outputs from the 
TFM are shown in Table 2.  There are two noteworthy features in this output table.  First, there are appreciable 
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differences in some performance measures between the surface intersection point and the closest point on the Pareto 
frontier, attributable to the test point’s position relative to the Utopia point and to the curvature of the Pareto frontier 
in this region.  Second, there is no tradeoff available within the domain of the TFM for reaching Pareto optimality 
by changing only Objective 4 or Objective 5. 

 

 
Table 2.  Tradeoffs Generated by the TFM 

 
Next, the VIE evaluates each alternative using the TFM to estimate its mass and design variable settings.  The 

masses of the alternatives are shown in Figure 7, scaled to the minimum mass observed among the alternatives.  
Interestingly, mass varies by more than 12% across five non-dominated solutions within a relatively small region of 
performance space.  The VIE observes another interesting trend in design variable settings between alternatives.  
Four of the super-elements in design space overlap almost completely, whereas the fifth (the Tradeoff in Objective 
1) is significantly different in both in nominal design variable settings and in available design freedom.  The 
differences in design variables, scaled relative to the centroid of the four overlapping super-elements, are shown in 
Figure 8.  The differences in design freedom for this alternative are shown in Figure 9.  The differences in design 
freedom are reported in numbers of indifference thresholds to help distinguish the more robust design variables 
(such as E and F) from the more sensitive ones (such as A and G).  The VIE then presents the results in the program 
team’s Town Hall meeting18 for discussion and definition of next steps. 

 

 
Figure 7: Relative Mass of Tradeoffs Generated by the TFM 
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Figure 8: Differences in Design Variables Between Two Solutions 

 
 

 
Figure 9: Differences in Design Freedom Between Two Solutions 

 
After some discussion of the relative merits of each proposed tradeoff, the program team reaches consensus on 

their direction.  The team is not prepared to accept any of the tradeoffs presented by the VIE without further 
investigation.  The team does, however, express a preference for the tradeoffs at the closest point on the Pareto 
frontier, on Objective 1, and on Objective 2, partially due to the low estimated masses for these solutions.  The VIE 
agrees to generate a local representation of the Pareto frontier representing all of the potential trade-offs between 
Objectives 1, 2, and 3 within the Equivalent Test Weight Classes of the team’s preferred solutions.  The VIE collects 
the required data by sampling the TFM using a standard experimental design in a software integration system.  The 
VIE then applies linear regression to represent all of the feasible combinations of performance objectives within 
each Equivalent Test Weight Class with smooth response surfaces.  The VIE is pleased to find that pure quadratic 
surfaces with Objective 3 as the dependent variable fit the data extremely well, yielding R2 > 0.995 in both cases.  
One of these surfaces is shown in Figure 10.  Finally, the VIE evaluates the slopes of both surfaces at each of the 
team’s preferred tradeoff points.  Using these slopes, the VIE constructs linear approximation models to estimate the 
change in each performance objective for a movement of one Equivalent Test Weight Class.  The relative changes in 
Objectives 1, 2, and 3 for a movement of one Equivalent Test Weight Class at one of the team’s preferred tradeoff 
points is shown in Figure 11. 
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Figure 10.  Compatible Performance Specifications Within an Engineering Test Weight Class 

 
 

 
Figure 11.  Relative Changes in Objectives For a Movement of One Engineering Test Weight Class 

 
The vehicle program manager is provided with a rich representation of the feasible and efficient combinations of 

performance objectives within the region bounded by the initial performance targets.  A revised set of vehicle 
performance targets is selected from the set defined by the TFM based on other criteria outside the technical 
feasibility domain.  The program team proceeds with the vehicle development process, confident that the vehicle 
they will design and produce will remain within its targeted test weight class and will realize the targeted 
performance. 

IV. Conclusion 
The TFM shows potential for becoming a powerful tool for establishing compatible vehicle performance targets 

along with a feasible preliminary vehicle design during the early stages of the vehicle development process.  
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Although the TFM was originally designed only to model tradeoffs between vehicle performance objectives, it has 
been demonstrated that important design variables or intermediate quantities such as vehicle mass may be tracked or 
included as decision variables by sampling and selective post-processing of solutions from the TFM. 

 
Perhaps the greatest challenge in future TFM development lies in managing the dimensionality of the 

performance and design spaces.  The challenge in generating high-quality sets of non-dominated solutions scales 
geometrically.  Likewise visualization of results becomes challenging whenever the number of interrelated 
quantities to be viewed simultaneously exceeds three.   Fundamentally there are two approaches for addressing these 
scale-related issues.  The first is to apply technical enablers, such as optimally-tuned genetic algorithms or systems 
specifically designed for visualization of high-dimensional data, to allow the scale to increase.  The second is to 
actively reduce the scale, perhaps through analytics or by applying formal decomposition methods.  For effective 
application of TFMs in the design of complex products, it is likely that a combination of both approaches will be 
necessary. 
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