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Abstract 

Trade space exploration, which often involves multiple users working in a collaborative 

environment, is a promising new decision-making paradigm that provides a visual and 

more intuitive means for formulating, adjusting, and ultimately solving design 

optimization problems. This is achieved by combining multi-dimensional data 

visualization techniques, specific user motives, and various levels of design expertise 

with visual steering commands to allow designers to “steer” the optimization process 

while searching for the best, or Pareto optimal design(s).  In this thesis, the goal is to 

investigate (1) how designers form local preferences to satisfy subsystem design 

objectives and constraints, (2) why subsystem-level designers make sacrifices to the 

system-level design during the design process, and (3) how the subsystem designers’ 

preferences are combined to obtain system-level Pareto optimal design solutions. The 

results indicate that subsystem designers formulate design preferences to support 

complex, large-scale system design problems most effectively when all system 

constraints are accurately accounted for and integrated into the collaborative design 

process. At the subsystem-level, designers are inclined to “overshoot” the feasible design 

region when the system-level constraint boundaries are not effectively communicated 

amongst the design team, which infers that automatic constraint handling would 

significantly improve the collaborative design effort. When subsystem designers make 

sacrifices to the system-level design early in the optimization process, system-level 

designers are challenged to realign team exploration with the principal design objective, 

stressing the importance of effective communication between the system designer and the 

subsystem designers early and often. The outcome of the collaborative optimization 
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process is directly proportional to the system designer’s ability to merge the subsystem 

mental models and to maintain a level of communication that encourages the subsystem 

designers to explore system optimal design regions. By effectively integrating system-

level optimization strategies in the concurrent engineering process, it is possible to 

improve the efficiency and quality of the overall design process. 
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Chapter 1 

Introduction 

Many engineering designers employ optimization-based tools and approaches to help 

them make decisions, particularly during the design of complex systems such as 

automobiles, aircraft, and spacecraft, which require tradeoffs between multiple 

conflicting and competing objectives. Trade space exploration is a promising alternative 

decision-making paradigm that provides a visual and more intuitive means for 

formulating, adjusting, and ultimately solving design optimization problems. It is often a 

challenge to integrate human expertise in large-scale analysis and optimization processes 

due to the inherent complexity of existing relationships. However, recent experimentation 

has shown that human insight can be effectively incorporated into optimization processes 

while reducing cycle time and/or expended resources [1]. 

 

One strategy to increase human involvement in complex system design is through 

collaborative optimization. In this approach, a design problem is divided into a user-

defined number of subsystem design problems that are motivated toward interdisciplinary 

compatibility and the appropriate solution by a system-level coordination process, which 

decreases the overall complexity of the problem [2]. This group collaboration method has 

numerous advantages that include decreasing responsibility for one designer, increasing 

the level of insight about the specific problem, and increasing user justification of 

preference selection [3]. Moreover, individual user-guided designs for multidisciplinary 

problems require the lone designer to simultaneously form and manage both the 

subsystem and overall system-level objectives, which is extremely difficult, if not 
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impossible, due to the system complexity. For instance, Wilson and Schooler [4] have 

shown that people do worse at some decision tasks when asked to analyze the reasons for 

their preferences or evaluate all the attributes of their choices. Likewise, Shanteau [5] 

observed that when people are dissatisfied with the results of a rational decision making 

process, they often change their ratings to achieve their desired result. These scenarios 

demonstrate that having an individual user manage the complete design of large-scale 

may not be reliable. Introducing collaboration and reducing design responsibility for 

users within the design environment creates a “checks and balances” structure that 

ensures reliability and consistency, while eliminating user manipulation from the overall 

design solution.   

 

Collaborative Optimization (CO) [6] can effectively be applied to solving both simple 

and complex design problems. When designing a basic market product, the complete 

team is divided into subgroups whose goal is to satisfy user-defined objectives and 

constraints in an attempt to obtain optimal designs. In addition, the project leader is 

responsible for continually integrating the subsystem level ideas into the overall system 

design. This concurrent methodology eliminates the design hierarchy and ensures group 

collaboration [7]. For instance, when IDEO, a design consultancy, developed a state-of-

the-art shopping cart, the overall design group was divided into subgroups that included 

child safety, ergonomics, materials, new technology integration, and cost [8]. The 

subgroups brainstormed ideas specifically to meet customer needs, surrounding their 

defined subsystem, and in some cases, completely neglected the system-level needs. At 

the subsystem level, designers form preferences based on the user-defined objectives and 
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constraints, which becomes the foundation for their local “mental model”. Young [9] 

defines a mental model as representations of people's behavior, philosophies, and 

emotion about how they will accomplish something, regardless of which tools they use. 

For example, the child safety subgroup for the IDEO problem developed a working 

shopping cart prototype with minimal space allotted for groceries, but a bulky protective 

holding mechanism for children to ensure safety. This demonstrates that the designer’s 

local mental model was formed primarily to satisfy subsystem-level needs, while 

sacrifices were made at the system-level in regards to overall market feasibility. 

Meanwhile, the group design leader was collaborating with the subgroups to form the 

final product design through the integration of the five subsystems. At the system-level, 

the subgroups’ mental models are merged, and the system team effectively combines, 

through consensus, the important aspects of the subgroups’ local mental models to form 

the team’s mental model.  

 

Regardless of the different objectives, constraints, expertise, and motives within each 

subgroup, they all play a unique and influential role in the development of the final 

product. Moreover, if the subgroups, consisting of individuals with various expertise and 

motives, were altered, a significantly different final product would likely be obtained. 

Similarly, in a multidisciplinary complex system design environment, different design 

solutions are obtained depending on the user’s defined objectives, formed preferences, 

motives, and level of subsystem expertise.  
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In order to study these relationships, this research investigates (1) how subsystem-level 

designers form preferences to satisfy specific subsystem objectives and constraints, (2) 

the sacrifices that subsystem-level designers make to the system-level design during the 

design process, and (3) how the multiple sub-users’ preferences are merged to obtain 

system-level Pareto optimal design solutions. Related research in collaborative and group 

multidisciplinary design optimization is discussed next in Chapter 2.  Chapter 3 describes 

the test problem used in this work and the experimental set-up for this study.  The results 

and findings are discussed in Chapter 4, and conclusions and suggested future work is 

outlined in Chapter 5. 
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Chapter 2 

Review of Related Work 

In the visualization community, interactive optimization-based methods fall primarily 

into the area of computational steering whereby the user (e.g., a designer) interacts with a 

simulation during the optimization process to help “steer” the search process toward an 

optimal solution. The designer observes a visual representation of the optimization 

process, and then uses intuition, heuristics, and/or other methods to adjust the design 

space to move in a direction that may not have been intuitive at the beginning of the 

simulation.  

 

To support trade space exploration, researchers at the Applied Research Laboratory 

(ARL) and Penn State have developed the ARL Trade Space Visualizer (ATSV) [10,11], 

a Java-based application that is capable of visualizing multi-dimensional trade spaces 

using glyph, 1-D and 2-D histogram, 2-D scatter, scatter matrix, and parallel coordinate 

plots, linked views [12], and brushing [13]. Figure 1 shows several examples of its data 

visualization capability. The glyph plot (left) can display up to seven dimensions by 

assigning variables to the x-axis, y-axis, z-axis, position, size, color, orientation, and 

transparency of the glyph icons. The scatter matrix (top right), a grid of all 2-D scatter 

plots, is useful for visualizing trends and two-way interactions in the data. Histograms 

(bottom right) show the distribution of samples in each dimension. 
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Figure 1. Three Displays of Data in ATSV 

The design variable (input) and performance (output) data for different design 

alternatives can either be generated off-line and then input into ATSV for visualization 

and manipulation or it can be generated dynamically “on-the-fly” by linking a simulation 

model directly with ATSV using its Exploration Engine capability [14]. If the simulation 

model is too computationally expensive to be executed in real-time, then low-fidelity 

metamodels can be constructed and used as approximations for quickly searching the 

trade space. Once this link is in place, ATSV provides a suite of controls to help 

designers navigate and explore the trade space, including visual steering commands to (1) 

randomly sample the design space, (2) search near a point of interest, (3) search in a 

direction of preference, or (4) search for the Pareto frontier [14]. A brief summary of 

each follows.  

 

1) Design space samplers are used to populate the trade space and are typically invoked 

if there is no initial data available. The user can sample the design space manually using 
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slider bar controls for each input dimension or randomly. When sampling randomly, the 

user specifies the number of samples to be generated and the bounds of the multi-

dimensional hypercube of X. The bounds of the design variables can be reduced at any 

point to bias the samples in a given region if desired. An example is shown in Figure 2.   

 
  (a) 100 initial samples                          (b) 100 new samplers in reduced region of interest 

Figure 2.  Example of Design Space Sampler 

2) Point samplers, also referred to as attractors, are used to generate new sample points 

near a user-specified location in the trade space. The attractor is specified in the ATSV 

interface with a graphical icon  that identifies an n-dimensional point in the trade space, 

and then new sample points are generated near the attractor – or as close as they can get 

to it. Unbeknownst to the user, the attractor generates new points using the Differential 

Evolution (DE) algorithm [15], which assess the fitness of each new sample based on the 

normalized Euclidean distance to the attractor. As the population evolves in DE, the 

samples get closer and closer to the attractor. An example is shown in Figure 3 where the 

user specifies an attractor to fill in a “gap” in the trade space (see Figure 3a). The new 

samples cluster tightly around Attractor_1 as seen in Figure 3b. 
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                   (a) 100 initial samples                                              (b) New samples generated near attractor 

Figure 3.  Example of Point Sampler using an Attractor 

3) Preference-based samplers allow users to populate the trade space in regions that 

perform well with respect to a user-defined preference function. New sample points are 

also generated by the DE algorithm, but the fitness of each sample is defined by the 

user’s preference structure instead of the Euclidean distance. An example of the 

preference-based sampler is shown in Figure 4. Using ATSV’s brushing and preference 

controls, the user specifies a desire to minimize Obj1 and maximize Obj3 with equal 

weighting (see Figure 4a). Figure 4b shows the initial samples shaded based on this 

preference, and Figure 4c shows the new samples, where the concentration of points 

increases in the direction of preference, namely, the upper left hand corner of the plot. 
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(a) Brush settings indicating user preference structure 

  
 (b) Initial samples shaded based on preference (c) New samples generated in direction of preference 

Figure 4.  Example of Preference-based Sampler 

4) Pareto samplers are used to bias the sampling of new designs in search of the Pareto 

frontier once the user has defined his/her preferences on the objectives. The DE algorithm 

is again used to accomplish this sampling but is modified to solve multi-objective 

problems [16]. An example of this sampler is shown in Figure 5. Using the same 

preference as before (i.e., minimize Obj1 and maximize Obj3 with equal weighting), 

Figure 5a shows the Pareto points in the initial samples while Figure 5b shows the Pareto 

frontier after executing seven generations of the DE with a population size of 25 points. 

The points are also shaded to indicate the region of high (red) and low (blue) preference 

along the Pareto frontier. 
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 (a) Initial samples (Pareto points denoted by +) (b) New samples generated along Pareto frontier  

Figure 5.  Example of Pareto Sampler 

These visual steering commands can be used together in any combination to explore the 

trade space. When used in concert with the ATSV, designers have a powerful multi-

dimensional visualization tool with the capability to “steer” the optimization process 

while navigating the trade space to find the best design. 

 

In the team environment, users incorporate collaboration and individual expertise to 

efficiently “steer” the search process, called a negotiated process [17]. This collaborative 

multidisciplinary searching methodology is effective when problems have notable 

complexity because individual users can make subsystem-level decisions using their own 

motives and areas of expertise in an attempt to obtain a more optimal overall system 

solution. ATSV is capable of supporting trade space exploration within the team 

environment by having multiple subsystem designers focus on optimizing subsystem-

level objectives, while the system supervisor combines and directs the system-level 

design process. The first step to running ATSV in a distributed manner is to develop an 

Exploration Engine to mediate between the ATSV and the complex-system simulation 

model. A sample Exploration Engine is shown in Figure 6.  
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Figure 6. Exploration Engine 

This enables the users to “drive” the model from within the ATSV interface. Next, a 

central network database is created on the system-level designer’s computer platform, 

which allows for communication between team members and a storage location for 

generated design solutions. The subsystem-level designers then link to the system-level 

central database through a network server, and the team is prepared to commence the 

Collaborative Optimization process. Each subsystem designer has the ability to “steer” 

the design search within the trade space using ATSV, and is responsible for satisfying 

user-defined subsystem objectives and constraints. The design team communication 

network is shown in Figure 7.  
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Figure 7. ATSV in Collaborative Environment 

The subsystem designers are responsible for system cost, payload, and structures. The 

designers are linked locally to both ATSV, where they make subsystem decisions to 

“steer” the design search in a high preference direction, as well as, the central database to 

communicate their design solutions to the system-level design manager. The system 

engineer is responsible for combining the design solutions obtained from the subsystem 

designers, and ensuring that the Collaborative Optimization process converges to a 

feasible optimal design solution. 

 

Collaborative Optimization, first proposed by Kroo and Sobieski [6] in 1994, has been 

successfully applied to a number of different multidisciplinary design optimization 

(MDO) problems. For instance, Tappeta, et al. [18] applied MDO to design high 

temperature aircraft engine components, and developed reliable, robust optimum 

preliminary designs that significantly reduce the overall design cycle time for companies. 

The aircraft engine study was conducted to assess the feasibility of Concurrent SubSpace 
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Optimization (CSSO) for the design and optimization of large-scale complex systems. 

Likewise, Kroo and Braun [19] investigated the impact of group collaboration for a 

single-stage-to-orbit launch vehicle. The problem was divided into three user-defined 

subsystems: vehicle design, cost, and trajectory. Like many complex design problems, 

the launch vehicle was characterized by 95 design variables and 16 constraints, which is 

an intractable task for one designer. The Collaborative Optimization utilizes the 

designer’s knowledge in order to reduce time and cost of both the subsets and entire 

system-level optimal design processes. Also, the study demonstrates the impact of a 

priori criterion on vehicle design and the difference between minimum weight and 

minimum cost concepts. Sobieski, et al. [20] used Collaborative Optimization to illustrate 

the solution process for aircraft wing and aircraft sizing design problems. For each 

example, Collaborative Optimization converged to the optimal solution, whereas, the 

direct single-level optimization strategy yielded suboptimal results. Renaud and Tappeta 

[21] further investigated collaborative optimization and developed a comprehensive 

overview of mathematically rigorous optimization strategies for Multi-Objective 

Collaborative Optimization (MOCO). When applied to problems in a multidisciplinary 

design environment, this scheme has several advantages over traditional solution 

strategies, including reducing the amount of information transferred between disciplines, 

the removal of large iteration-loops, and the ability to explore new solution regions in the 

trade space.  

 

Throughout the Collaborative Optimization process, mental models are formed by 

subsystem and system-level designers to provide a clear road map for increased system 
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organization, a better understanding of user experiences/needs, and to get users on the 

same page. During trade space exploration, users are continuously learning, and thus 

changing and adapting their mental models to efficiently solve the design optimization 

problem. According to Norman, “memory through explanation by using and making 

mental models is the more powerful form of internal memory” [22]. This demonstrates 

that incorporating human motives and expertise with visual steering commands in the 

design paradigm may be more effective than allowing a Multi-Objective Genetic 

Algorithm (MOGA) to run “blindly”. Simpson, et al. [1] compares the performance of 

different combinations of visual steering commands implemented by two users to a 

MOGA that is executed “blindly” on the same problem with no human intervention. 

Similar to Norman’s conclusion, Simpson, et al. found a 4x -7x increase in the number of 

Pareto solutions that are obtained when the human is “in-the-loop” during the 

optimization process. Allowing human interaction in conjunction with a genetic 

algorithm may provide the best design scenario because it incorporates the designer’s 

mental model shaped by advanced discipline expertise and motives. Likewise, group 

interaction during trade space exploration requires team consensus to control the 

formation of mental models for making interdisciplinary system-level decisions, thus 

eliminating the “apt to be deficient in a number of different ways” [22].  

 

On the subsystem-level, mental models are formulated based on user-defined objectives 

and expertise, often making sacrifices to the system-level design. For instance, Cao and 

MacKenzie [23] performed task and motion analysis during endoscopic surgery. They 

determined that the system-level design was dominated by the subsystem-level designer’s 



15 

need to minimize both cost and unique surgeon movements. During Collaborative 

Optimization, discipline experts make design decisions to satisfy their objectives without 

considering the impact of their decisions on the system design. The goal of the system-

level designer is to integrate the multiple subsystem-level designer preferences and input 

effectively to guide the system-level exploration process towards feasible, Pareto optimal 

designs.  

 

Research indicates that optimal design solutions are attained through effective 

communication and group formation of preferences within a collaborative environment. 

Orasanu [24] investigated the decision making process of pilots in an aircraft cockpit to 

understand how aircraft pilots simultaneously formed individual preferences, to control 

their aircraft, and group preferences, to coherently fly multiple aircrafts in a fleet. Such 

teams are comprised of individuals who have a high degree of expertise in their specific 

discipline areas, making it difficult, yet essential, to effectively converge as a team when 

making critical decisions. Furthermore, the decision environments in which these experts 

must function are constrained by deadlines, multidisciplinary decision responsibilities, 

rapidly changing information, and high information ambiguity. Therefore, designers must 

effectively interact in a collaborative environment to form and amalgamate subsystem-

level preferences to obtain optimal system-level decisions. Likewise, concurrent 

engineering require the subsystem designers to form local preferences, using personal 

expertise and motives, to meet their objectives, while continually merging their optimal 

subsystem-level design solutions and preferences with the system-level process. This 
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collaborative technique and the process for forming subsystem and system preferences is 

demonstrated in Chapter 3 using a NASA space shuttle external fuel tank model. 
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Chapter 3 

Test Problem Overview and Experimental Set-Up 

3.1    Test Problem Overview 

The test problem used is this thesis is an external fuel tank for the Space Shuttle that is 

comprised of structural and aerodynamic analyses as well as a cost model to determine 

the Return on Investment (ROI) for launching a payload into orbit. The model is a 

simplified version of the Space Shuttle external fuel tank (see Figure 8) developed by Dr. 

Jaroslaw Sobieski, formerly of NASA Langley Research Center in Hampton, VA [25].  

The model was originally developed by Dr. Sobieski to illustrate how changes in a 

problem’s objective function influence the resulting optimal design. The external fuel 

tank problem was chosen for this thesis study because it involves sufficient complexity to 

assess the formation of designer preferences during concurrent engineering, and is based 

in Microsoft Excel making trade space exploration possible using the ATSV [10].   

 
Figure 8. (left) Space Transportation System (STS) External Fuel Tank 

configuration, (right) External Fuel Tank (EFT) in front of Vehicle Assembly 
Building at the NASA Kennedy Spaceflight Center [25] 
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3.1.1    Model Nomenclature 

C = Cost ($) 
h/R = Cone height : radius ratio 
L = Cylinder length 
R = Tank radius (m) 
σ = Component stress (N/m2) 
t1 = Cylinder thickness (m) 
t2 = Sphere thickness (m) 
t3 = Cone thickness (m) 
 

3.1.2    Model Description 

The model divides the external fuel tank into three hollow geometric segments: (1) a 

cylinder (length L, radius R), (2) a hemispherical end cap (radius R), and (3) a conical 

nose (height h, radius R), as shown in Figure 9. These segments have thicknesses t1, t2, 

and t3, respectively. Surface areas and volumes are determined using geometric relations, 

and first principles are used to calculate stresses, vibration modes, aerodynamic drag, and 

cost. There are five continuous inputs to the system including radius (R), cylinder 

thickness (t1), sphere thickness (t2), cone thickness (t3), and cone height to radius ratio 

(h/R). Differing from the model developed by Sobieski, cylinder length is no longer an 

input variable in order to achieve a volume equality constraint. This modification 

significantly increased the overall number of feasible design solutions because it 

eliminates an equality constraint from the problem. There are numerous outputs from the 

model including surface areas (Ai), masses (Mt), stresses (σ), first vibration mode 

frequency (ζ), payload (pn), seam and material costs (λ and κ), and return on investment 

(ROI). 
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Figure 9. EFT Model [25] 

3.2    Experimental Set-Up 

In this study, the external fuel tank model was divided into the three design subsystems: 

(1) structures, (2) cost, and (3) payload to support collaborative engineering techniques. 

The overall system objective is to maximize ROI, while the subsystem objectives are to 

maximize actual payload, minimize tank material weight, and minimize total cost. Table 

1 summarizes the inputs, outputs, objectives, and constraints of the subsystems and 

overall system used in the Collaborative Optimization case study.  

 

 

 

 

 

R

h

L

t1

t2

t3

σ1

σ2

σ1

σ2

σ1

σ2

seam 



20 

Table 1. Subsystem and System Objectives, Constraints, Inputs, and Outputs 

Structures 
Inputs: 
- R, t1, t2, t3, h/R 
Outputs: 
- Component and Tank Surface Areas 
- Component and Tank Volumes 
- Stresses 
- First Vibration Mode 
Constraints: 
- Stress (Cylinder, Cone, Sphere) 
- Vibration 
- Length 
Objective: 
- Minimize tank material weight 

Cost 
Inputs: 
- R, t1, t2, t3, h/R 
Outputs: 
- Seam Cost 
- Material Cost 
- Total Cost 
Constraints: 
- Length 
Objective: 
- Minimize total cost 

Payload 
Inputs: 
- R, h/R 
Outputs: 
- Shuttle Payload 
Constraints: 
- Length 
Objective: 
- Maximize actual payload 

ROI 
Inputs: 
- R, t1, t2, t3, h/R 
Outputs: 
- ROI 
Constraints: 
- Length 
Objective: 
- Maximize ROI 

 

The first step in the experimental set-up is to integrate the external fuel tank model into 

the collaborative environment using the multidimensional visualization tool, ATSV. This 

enables the model to be used in conjunction with ATSV’s Exploration Engine to “drive” 

the model from within the ATSV interface. Next, a network database is created on the 

system-level platform to keep real-time records of the subsystem-level decisions to 

simultaneously update the overall system designer. This allows the system-level designer 

to effectively form design preferences and make educated decisions while “steering” the 

system design in the optimal direction. The subsystem-level designers link to the system-

level database through a network server and actively participate in the Collaborative 

Optimization process. MDO requires the subsystem designers to form local preferences, 
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using personal expertise and motives, to meet their defined objectives, while continually 

merging their optimal subsystem-level design solutions and preferences with the system-

level process. To accurately understand the user’s formation of preferences, each 

subsystem designer was required to fill out a form (shown in Figure 10), which indicates 

the samplers used by the designer during the exploration process, the parameter settings 

for each sampler used, and the users’ motivations for using each sampler. 

 

 
Figure 10. Distributed ATSV User Action Form 
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The Collaborative Optimization procedure was conducted twice in the Leonhard Building 

Engineering Design Optimization Group (EDOG) Computer Lab at The Pennsylvania 

State University with users of different experience levels controlling the various 

subsystem and system-level design processes. The collaborative design environment in 

EDOG was set up to mimic what can be found in industry, for example, the collaborative 

Team X environment at NASA’s Jet Propulsion Laboratory (See Figure 11).   

 
Figure 11. Collaborative Design Environment 

The variation of user experience allows for an accurate investigation of how various 

designers form subsystem-level preferences, make sacrifices to the system-level design to 

satisfy subsystem-level objectives, and merge subsystem design preferences, motives, 

and expertise to obtain an optimal design solution. The results from these experiments are 

discussed next in Chapter 4. 
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Chapter 4 

User Decision-Making Process and Results 

The Collaborative Optimization study was conducted by two different groups of users, 

each making significantly different design decisions based on individual user expertise, 

motives, and preference formation. Understanding user motives when making design 

decisions and the development of user preferences is important because each subsystem 

plays an integral role in the development of the system design. This chapter discusses 

how subsystem-level designers form and evolve design preferences, and make sacrifices 

to the system-level design to satisfy their subsystem objectives using external fuel tank 

case studies.  

4.1   Trial 1 Results 

Trial 1 was executed by novice, single time, ATSV users managing the structures and 

cost subsystems, an advanced, extended use, user managing the payload subsystem, and 

an intermediate, multiple time, user managing the system-level design. The subsystem 

users were asked to use an unrestricted number of function evaluations to generate design 

solutions to satisfy their objectives and constraints, and then decide upon a region, or 

design, of high preference to communicate to the system-level user. Meanwhile, the 

system-level designer was responsible for effectively integrating the subsystem-level 

preferences to make informed design decisions and develop an optimal overall system 

design using ATSV’s visual steering commands [14]. While there are nearly an infinite 

number of combinations of brushing, preference controls, and visual steering commands 

that could be implemented in ATSV, we allowed the users to form individual design 

preferences using their discipline expertise and motives to efficiently “steer” the design 
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search in a direction that they felt was “natural”. During the exploration and collaboration 

process, the designers record their motivation for making decisions as well as comment 

on their mental model. This gives the ability to accurately understand how designers 

initially form preferences, and how these preferences evolve throughout the exploration 

process. Table 2 describes the specific combination of visual steering commands and 

brush/preference controls used by subsystem-level and system-level designers in Trial 1. 

Unless specified, the Exploration Engine options were left at default settings of 

generation size = 25, population limit = 500, and the Best1Bin selection strategy.   

Table 2. Designer Decision-Making Process for Trial 1 
Structures (Total Points: 1375) Cost (Total Points: 2225) 

- Basic Sampler:  100 runs 
- Brush weight:  Minimize weight (-100) 
- Pareto Sampler: Minimize weight 
- Line Attractor: Set at the current minimum limit of the 

weight scatter plot window 
- Pareto Sampler: Minimize weight 
- Line Attractor: Set at the current minimum limit of the 

weight scatter plot window 
- Point Attractor: Set to edge of feasible points (Weight 

vs. R) 
- Point Attractor: Set to edge of feasible points (Weight 

vs. R) 
- Point Attractor: Set at the current minimum limit of the 

weight and t1 scatter plot window (Weight vs. t1) 
Picked Best Region 

- Basic Sampler:  100 runs 
- Brush cost:  Minimize cost (-100) 
- Pareto Sampler: Minimize cost 
- Line Attractor: Set at the current minimum limit of the 

cost scatter plot window 
- Point Attractor: Set Cost = 0, L = 9000 (Cost vs. L) 
- Line Attractor: Set at the current minimum limit of the 

cost scatter plot window 
- Point Attractor: Set Cost = 0, SphereConstraint = 1 

(Cost vs. SphereConstraint) 
- Picked Best Region 

Payload (Total Points: 876) System ROI (Total Points: 2200) 
- Basic Sampler:  100 runs 
- Brush payload:  Maximize payload (+100) 
- Pareto Sampler: Maximize payload 
- Line Attractor: Set at the current maximum limit of the 

payload scatter plot window 
- Brushed Out:  R (.5 – 1.2), h/R (.17 – 4.06), Payload 

(40700 – 57100) 
- Pareto Sampler: Maximize payload 
- Point Attractor: R = .705, Pareto optimal region 
- Picked Best Region 

- Basic Sampler:  100 runs 
- Brush ROI:  Maximize ROI (+100) 
- Pareto Sampler: Maximize ROI 
- Line Attractor: Set at the current maximum limit of the 

ROI scatter plot window 
- Line Attractor: Set at the current maximum limit of the 

ROI scatter plot window 
- Pareto Sampler: Maximize ROI 
- Point Attractor: Pareto optimal region 
- Picked Best Design 

 

The structures subsystem designer had minimal experience using ATSV prior to the study 

and was responsible for minimizing the external fuel tank material weight. With a minor 

understanding of the test problem, the structures designer generated 100 design solutions 

using the basic sampler to “get an initial sample of data, to locate the range of weight 
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values in the multi-dimensional trade space.” The basic sampler is most efficient and 

effective when the designer wants to explore the trade space without the hindrance of 

design constraints because it samples uniformly across the entire trade space. Using 

intuition, the structures designer formed his initial preferences, and decided to use the 

Pareto sampler to search for the optimal solutions along the Pareto frontier. The designer 

knows that this decision will begin to move the design search in the desired direction but 

will have to use other visual steering commands to further “push” and “fill in” the Pareto 

frontier. This was accomplished through the use of several point and line attractors. 

When placing the point attractor, the designer decided upon a region that minimized 

weight and ROI with the intention to increase diversity along the Pareto frontier. While 

this decision benefited the structures subsystem-level design, sacrifices were made to the 

overall system-level design, where the objective was to maximize ROI. Next, the 

designer located the region of highest preference within the trade space, and brushed the 

stresses, vibration, and length constraints to eliminate infeasible design solutions. Before 

these controls were set to reveal the feasible region, the user was inclined to place 

attractors along the infeasible region’s Pareto frontier since it dominated the resultant 

feasible region. The Pareto samplers and line attractors used previously explored only 

infeasible regions of the trade space because the designs “overshot” the feasible region 

when minimizing weight. Figure 12a shows the cost and ROI Pareto frontier without 

brushed constraints, and Figure 12b shows the shift in the cost and ROI Pareto frontier 

when the subsystem constraints are brushed.  
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(a) Pareto Frontier without Brushed Constraints                           (b) Feasible Pareto Frontier 

Figure 12. Infeasible (a) and Feasible (b) Pareto fronts (+ denotes Pareto points) 

The designer was forced to evolve his mental model and subsystem-level preferences 

because brushing the infeasible designs significantly shifted the Pareto frontier. With the 

evolved preferences and user motives in mind, he placed a line and point attractor at the 

minimum weight value within the constrained feasible region, a method referred to as 

manual constraint handling [26]. The structures designer decided that the design search 

had “stalled”, and selected the optimal structures design point and region developed 

within the subsystem that satisfied all the subsystem constraints. Figure 13 shows the 

optimal structures design point by the black diamond ( ), the optimal design region by 

the black ellipse ( ), and the infeasible design solutions by the gray dots ( ). The red 

dots ( ) represent the designs generated by the structures subsystem designer. The 

structures subsystem was highly constrained, thereby, significantly reducing the number 

of feasible design solutions. Lastly, the structures designer communicated his preference 

model to the system-level designer to ensure that the overall system design could be 

collaboratively optimized.  
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Figure 13. Optimal Structures Subsystem Design ( ) and Region ( ) for Trial 1 

The cost subsystem designer had minimal experience using ATSV prior to the study and 

was responsible for minimizing the external fuel tank total cost. With a limited 

understanding of the test problem, the cost designer generated 100 design solutions using 

the basic sampler. Identical to the structures designer, the user motivation was to “get an 

initial sample of data to locate the range of cost values in the multi-dimensional trade 

space.” Using intuition, the cost designer formed his initial preferences, and decided to 

use the Pareto sampler to search for the optimal solutions along the Pareto frontier. The 

designer knew that this decision would begin to move the design search in the desired 

direction, but he would have to use other visual steering commands to further “push” and 

“fill in” the Pareto frontier. This was accomplished through the use of point attractors. 

Similar to the structures subsystem, the cost designer presumed that he was obtaining an 

optimal design because all the designs being generated are feasible with their local 

constraints, but at the system-level the designs drastically “overshot” the feasible region 

with respect to the other subsystem constraints. At this point in the design process, the 
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user commented that “the Pareto frontier continues to shift towards a more desirable 

region, but there are regions with clusters of designs, and others with empty space”. To 

resolve this issue, the designer formed a preference to “fill in” the Pareto frontier in the 

minimum cost and ROI region, similar to the structures subsystem. Once again, this 

decision benefited the structures subsystem-level design, but sacrificed the overall 

system-level design, where the objective was to maximize ROI. Next, the designer 

located the region of highest preference within the trade space, and brushed the length 

constraints to eliminate design solutions that are infeasible. Unlike the structures 

subsystem, the cost designer did not need to change his mental model or initial 

preferences because brushing had negligible effect on the feasible design Pareto frontier. 

The cost designer placed one more attractor to try and further shift the Pareto frontier 

towards minimized cost, but realized that the design search had “stalled”, and selected the 

optimal cost design point and region within the subsystem that satisfied all the subsystem 

constraints. Figure 14 shows the optimal cost subsystem design represented by the black 

diamond ( ), the optimal system design represented by a green diamond ( ), the optimal 

design region represented by the black ellipse ( ), and the infeasible design solutions for 

the subsystem represented by gray dots ( ). Note that there are no infeasible points 

visible in gray because the cost subsystem was only constrained by length and not by 

strict structures constraints. Therefore, the high preference design region shown in Figure 

14 is optimal at the cost subsystem-level, but not for the overall system, which shows that 

subsystem designers often neglect the overall system objectives in the exploration 

process. The optimal feasible system-level design generated by the subsystem designer 

would cost approximately $300,000 more than the optimal subsystem design and increase 
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the ROI slightly (shown by the magenta diamond ( ) in Figure 15). Lastly, the designer 

communicated his preference model to the system-level designer to ensure that the 

overall system design was optimized. Unlike the structures subsystem, the cost designer 

was never informed that his designs are infeasible to structure constraints, and therefore 

the optimal design region communicated to the system-level designer was erroneous. 

 
Figure 14. Optimal Cost Subsystem Design ( ) and Region ( ) for Trial 1 

 
Figure 15. Optimal Cost Design ( ) with All Constraints Brushed 
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The payload subsystem designer had expert-level experience using ATSV prior to the 

study and was responsible for maximizing the external fuel tank actual payload. With a 

concrete understanding of the test problem from previous work, the payload designer 

began the trade space exploration process with a Pareto sampler. The user motivation was 

to “try to obtain designs which maximize payload in a space that already had several 

hundred points populated”. Unlike the other subsystem-level designers, who began the 

search with a basic sampler, the payload user had a visual representation of the Pareto 

frontier and immediately began to “push” the frontier towards a more desired payload 

region. This design decision was ineffective because the initial Pareto frontier, generated 

by the Pareto sampler, immediately “overshot” the system-level feasible design region. 

This decision resulted in the payload designer generating two feasible system solutions 

and 874 infeasible solutions. Nevertheless, the designer selected the optimal cost design 

point and region developed within the subsystem that satisfied all the subsystem 

constraints. Figure 16 shows the optimal cost subsystem design represented by the black 

diamond ( ), the optimal design region by the black ellipse ( ), and the infeasible design 

solutions for the subsystem represented by gray dots ( ). Note that there are no infeasible 

points visible in gray because the payload subsystem was only constrained by length, but 

not by the strict structures constraints. Therefore, the high preference design region 

shown in Figure 16 is optimal at the cost subsystem-level, but not for the overall system, 

which shows that subsystem designers often neglect the overall system objectives in the 

exploration process. The optimal feasible system-level design generated by the subsystem 

designer would have a payload of approximately 15,000 kg less than the optimal 

subsystem design and decrease the ROI significantly (shown by the green diamond ( ) in 
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Figure 17). Lastly, the designer communicated his preference model to the system-level 

designer to ensure that the overall system design was optimized. Unlike the structures 

subsystem, the payload designer was never informed that his designs are infeasible to 

structure constraints, and therefore the optimal design region communicated to the 

system-level designer was also erroneous. 

 
Figure 16. Optimal Payload Subsystem Design ( ) and Region ( ) for Trial 1 

 
Figure 17. Optimal Payload Design ( ) with All Constraints Brushed 
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The subsystem designers effectively selected optimal design points and regions for each 

of the subsystem objectives, and they communicated their preferences with the system-

level designer in a collaborative environment. The system designer merged the different 

decisions and mental models of the subsystem designers, while he searched the trade 

space for a feasible design that maximized ROI. This process can be difficult because 

optimal designs at the subsystem-level may satisfy local constraints, but they may not 

satisfy all system-level constraints. To work around this issue, designers selected a region 

of high preference points in a specific range defined within the subsystem trade space. 

This allowed the system-level designer to have greater flexibility when selecting the 

optimal design in the trade space. Collaboration occurred between subsystems using 

differentiation annotations (i.e.,  with user comments) to further search and refine the 

optimal system design. In the study, Trial 1 yielded successful results when combining 

the subsystem-level optimal design regions because one design was in the high 

preference region for all the subsystems and was the optimal system-level design. The 

system design selected was less optimal with respect to individual subsystem-level 

optimal designs because the constraints for this test problem significantly reduced the 

number of feasible system-level designs (red dots in Figure 18). Without automatic 

constraint handling [26] or an accurate knowledge of all system constraints, the 

subsystem designs “overshot” the feasible region when using the Pareto and attractor 

samplers. The optimum, Point 2333, is shown in Figure 18, Figure 19, and Figure 20 for 

weight, cost, and payload versus ROI with infeasible points brushed out (constraints), 

respectively. Point 2333 minimizes weight, minimizes cost, maximizes payload, while 

maximizing the system ROI. Thus, Point 2333 is deemed the optimal system design 
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within the collaborative environment for Trial 1, and the design details are shown in 

Figure 21. 

 
Figure 18. Optimal System Design (Weight) for Trial 1 

 
Figure 19. Optimal System Design (Cost) for Trial 1 
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Figure 20. Optimal System Design (Payload) for Trial 1 

 
Figure 21. Design Details for Point 2333 

4.2   Trial 2 Results 

Trial 2 was executed by advanced ATSV users managing the structures, cost, and 

payload subsystems as well as the system-level design. Identical to the Trial 1 process, 

the subsystem users could use an unrestricted number of function evaluations to generate 

design solutions to satisfy their objectives and constraints, and then decide upon a region, 

or design, of highest preference to communicate to the system-level user. Meanwhile, the 

system-level designer was responsible for effectively integrating the subsystem-level 

preferences to make educated design decisions and develop an optimal overall system 
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design using ATSV’s visual steering commands [14]. Table 3 describes the specific 

combination of visual steering commands and brush/preference controls used by 

subsystem-level and system-level designers in Trial 2. Unless specified, the Exploration 

Engine options were left at default settings of generation size = 25, population limit = 

500, and the Best1Bin selection strategy.   

Table 3. Designer Decision-Making Process for Trial 2 
Structures (Total Points: 2150) Cost (Total Points: 1375) 

- Basic Sampler:  100 runs 
- Brush weight:  Minimize weight (-100) 
- Pareto Sampler: Minimize weight 
- Line Attractor: Set at the current minimum limit of the 

weight scatter plot window 
- Line Attractor: Set at the current minimum limit of the 

weight scatter plot window 
- Line Attractor: Set at the limit of the feasible region 

(with constraints applied) 
- Point Attractor: Set to edge of feasible points (Weight 

vs. Cost) 
- Brush constraints: Cone stress (<0), Sphere stress 

(<0), Cylinder stress (<0), Vibration Mode (<0), L (>0) 
- Point Attractor: Set to edge of feasible points (Weight 

vs. Cost) 
- Picked Best Region 

- Basic Sampler:  200 runs 
- Line Attractor: Set at the current minimum limit of the 

cost scatter plot window (Cost = 396,068) 
- Line Attractor: Set at the current minimum limit of the 

cost scatter plot window (Cost = 396,068) 
- Brush cost:  Minimize cost (-100) 
- Pareto Sampler: Minimize cost 
- Brush cost and ROI:  Minimize cost (-100) and 

maximize ROI (+100) 
- Pareto Sampler: Minimize cost and maximum ROI 
- Picked Best Region 

Payload (Total Points: 1400) System ROI (Total Points: 3345) 
- Basic Sampler:  100 runs 
- Brush payload:  Maximize payload (+100) 
- Pareto Sampler: Maximize payload 
- Line Attractor: Set at the current maximum limit of the 

payload scatter plot window 
- Brush L: L (>0) 
- Line Attractor: Set at the current maximum limit of the 

payload scatter plot window 
- Point Attractor: Set to edge of feasible points 

(Payload vs. Cost) 
- Picked Best Region 

- Basic Sampler:  1000 runs 
- Brush ROI:  Maximize ROI (+100) 
- Point Attractor: Window maximum (ROI = 1.001, L = 

17,857) 
- Pareto Sampler: Maximize ROI 
- Point Attractor: Window maximum (ROI = 1.001, 

Weight = 10,585) 
- Point Attractor: Window maximum (ROI = 1.001, Cost 

= 471,726) 
- Pareto Sampler: Maximize ROI, minimize cost, 

minimize vibration constraint, maximize payload 
- Point Attractor: Pareto optimal region (ROI = 1.001, 

Cost = 677,155, Payload = 57,701) 
- Picked Best Design 

 

The structures subsystem designer was an advanced ATSV user and was responsible for 

minimizing the external fuel tank material weight. With a concrete understanding of the 

test problem, the structures designer generated 100 design solutions using the basic 

sampler to “get a sense of the multi-dimensional trade space”. Prior to fully investigating 

the subsystem design requirements, the structures designer proceeded to use various 
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combinations of Pareto samplers and line attractors to search for the optimal solutions 

along the Pareto frontier. The designer believed that these decisions would begin to move 

the design search in a direction of high preference, but conversely, the design solutions 

“overshot” the feasible region and were in infeasible regions beyond the subsystem 

constraint boundaries. Figure 22a shows the optimal point for minimized weight without 

brushed constraints, and Figure 22b shows the shift in the optimal point for minimized 

weight when the subsystem constraints are brushed. After brushing the structure 

constraints, the feasible design count reduced from 1,476 to 92. The structures designer 

wasted 1,384 function evaluations to explore a region that was infeasible at the 

subsystem-level, consequently jeopardizing the collaborative effort because he 

communicated infeasible designs to the system designer. This caused the system designer 

to form an infeasible preference structure, and led the group towards an unobtainable 

design. 

  
(a) Pareto Frontier without Brushed constraints                           (b) Feasible Pareto Frontier 

Figure 22. Infeasible (a) and Feasible (b) Pareto Fronts (+ denotes optimal points) 

Despite an unproductive search of the unfeasible trade space region, the structures 

designer was forced to evolve his mental model and subsystem-level preferences because 
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brushing the constraints significantly shifted the location of the optimal point. With the 

evolved preferences and user motives in mind, the designer placed a line and point 

attractor at the minimum weight value within the constrained feasible region. The 

structures designer decided that the design search had “stalled”, and selected the optimal 

structures design point and region developed within the subsystem that satisfied all the 

subsystem constraints. Figure 23 shows the optimal structures design point represented 

by the black diamond ( ), the optimal system design by a green diamond ( ), the 

optimal design region by the black ellipse ( ), and the infeasible design solutions by the 

gray dots ( ). The red dots ( ) represent the designs generated by the structures 

subsystem designer. The structures subsystem was highly constrained, thereby, 

significantly reducing the number of feasible design solutions. Lastly, the designer 

communicated his preference model to the system-level designer to ensure that the 

overall system design could be collaboratively optimized.  

 
Figure 23. Optimal Structures Subsystem Design ( ) and Region ( ) for Trial 2 

The cost subsystem designer had extensive experience using ATSV prior to the study and 

was responsible for minimizing the external fuel tank total cost. With a limited 
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understanding of the test problem, the cost designer generated 200 design solutions using 

the basic sampler. Using intuition, the designer knew that this decision would uniformly 

search the entire trade space, but he would have to use other visual steering commands to 

further “push” and “fill in” the Pareto frontier. He accomplished this through the use of 

point and line attractors. Similar to the structures subsystem from Trial 1, the cost 

designer presumed that he was obtaining an optimal design because all the designs being 

generated were feasible with their local constraints, but at the system-level the designs 

drastically “overshot” the feasible region with respect to the other subsystem constraints. 

At this point in the design process, the user commented that “the Pareto frontier continues 

to shift towards a more desirable region, but there are regions with clusters of designs and 

others with empty space”. To resolve this issue the designer formed a preference to “fill 

in” the Pareto frontier in the minimum cost and ROI region, similar to the structures 

subsystem. Once again, this decision benefited the structures subsystem-level design, but 

sacrificed the overall system-level design, where the objective was to maximize ROI. 

Next, the designer located the region of highest preference within the trade space, and 

brushed the length constraints to eliminate design solutions that were infeasible. Unlike 

the structures subsystem, the cost designer did not need to change his mental model or 

initial preferences because brushing had negligible effect on the feasible design Pareto 

frontier. The cost designer placed one more attractor to try and further shift the Pareto 

frontier towards minimized cost, but he realized that the design search had “stalled”, and 

selected the optimal cost design point and region developed within the subsystem that 

satisfied all the subsystem constraints. Figure 24 shows the optimal cost subsystem 

design represented by the black diamond ( ), the optimal system design represented by a 



39 

green diamond ( ), the optimal design region by the black ellipse ( ), and the infeasible 

design solutions for the subsystem represented by gray dots ( ). Note that there are no 

infeasible points visible in gray because the cost subsystem was only constrained by 

length, but not by the strict structures constraints. Therefore, the high preference design 

region shown in Figure 24 is optimal at the cost subsystem-level, but not for the overall 

system, which shows that subsystem designers often neglect the overall system objectives 

in the exploration process. The optimal feasible system-level design generated by the 

subsystem designer would cost approximately $200,000 more than the optimal subsystem 

design and increase the ROI slightly (shown by the magenta diamond ( ) in Figure 25). 

Lastly, the designer communicated his preference model to the system-level designer to 

ensure that the overall system design was optimized. Unlike the structures subsystem, the 

cost designer was never informed that his designs were infeasible to structure constraints, 

and therefore the optimal design region communicated to the system-level designer was 

erroneous. 

 
Figure 24. Optimal Cost Subsystem Design ( ) and Region ( ) for Trial 2 



40 

 
Figure 25. Optimal Cost Design ( ) with All Constraints Brushed 

The payload subsystem designer for both trials had expert-level experience using ATSV 

and was responsible for maximizing the external fuel tank actual payload. With a 

concrete understanding of the test problem from previous work, the payload designer 

began the trade space exploration process with a basic sampler followed by a Pareto 

sampler to “try to obtain designs which maximize payload in a space that already had 

several hundred points populated”. The payload user had a visual representation of the 

Pareto frontier and immediately began to “push” the frontier towards a more desired 

payload region. This design decision was ineffective because the initial Pareto frontier, 

generated by the Pareto sampler, immediately “overshot” the system-level feasible design 

region. This decision resulted in the payload designer only generating six feasible system 

solutions and 1,394 infeasible solutions. Prior to selecting the optimal subsystem design, 

this designer took a different approach and collaborated with the system-level designer to 

refine his search. The system-level designer shared his evolved preference model and 

collaboratively guided the subsystem designer towards a more desired region. The 

designer selected the optimal cost design point and region developed within the 
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subsystem that satisfied all the subsystem constraints. Figure 26 shows the optimal cost 

subsystem design represented by the black diamond ( ), the optimal design region by the 

black ellipse ( ), and the infeasible design solutions for the subsystem represented by 

gray dots ( ). Note that there are no infeasible points visible in gray because the payload 

subsystem was only constrained by length, but not the strict structures constraints. 

Therefore, the high preference design region shown in Figure 26 is optimal at the cost 

subsystem-level, but not for the overall system, which shows that subsystem designers 

often neglect the overall system objectives in their exploration process. Because the 

payload designer communicated early and often, he was able to effectively “steer” the 

subsystem towards an optimal region without making sacrifices on the system design. 

The optimal feasible system-level design selected by the subsystem designer is shown in 

Figure 27 by the green diamond ( ). Lastly, the designer communicated his final 

preference model to the system-level designer to ensure that the overall system design 

was optimized.  

 
Figure 26. Optimal Payload Subsystem Design ( ) and Region ( ) for Trial 2 
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Figure 27. Optimal Payload Design ( ) with All Constraints Brushed 

Other than the structures subsystem, the designers effectively selected optimal design 

points and regions for each of the subsystem objectives, and communicated their 

preferences with the system-level designer in a collaborative environment. The system 

designer merged the different mental models of the subsystem designers, while he 

searched the trade space for a feasible design that maximized ROI. This can be difficult 

because optimal designs at the subsystem-level may satisfy local constraints, but they 

may not satisfy all system-level constraints. To work around this issue, designers selected 

a region of high preference points in a range of the subsystem trade space. This allowed 

the system-level designer to have greater flexibility when selecting the optimal Pareto 

design in the trade space. In this study, Trial 2 also yielded successful results when 

combining the subsystem-level optimal design regions because one design was in the 

high preference region for all the subsystems and was the optimal system-level design. 

Similar to Trial 1, the system design selected is less optimal with respect to individual 

subsystem-level optimal designs because the constraints for this test problem 

significantly reduced the number of feasible system-level designs (red dots in Figure 18). 
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Without automatic constraint handling [26] or an accurate knowledge of all system 

constraints, the subsystem designs “overshot” the feasible region when using the Pareto 

and attractor samplers. The optimum, Point 3267, is shown in Figure 28, Figure 29, and 

Figure 30, for weight, cost, and payload versus ROI with infeasible points brushed out 

(constraints), respectively. Point 3267 minimizes weight, minimizes cost, maximizes 

payload, while maximizing the system ROI. Thus, Point 3267 is deemed the optimal 

system design within the collaborative environment for Trial 2 and the design details are 

shown in Figure 31. 

 
Figure 28. Optimal System Design (Weight) for Trial 2 

 
Figure 29. Optimal System Design (Cost) for Trial 2 
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Figure 30. Optimal System Design (Payload) for Trial 2 

 
Figure 31. Design Details for Point 3267 

After successfully completing two case studies on the external fuel tank model in a 

collaborative environment, Trial 1 yielded the optimal system design, Point 2333 (ROI = 

0.2012). Trial 2 performed adequately, but the system design (Point 3267, ROI = 0.1250) 

was inferior. As an observer, it appeared that the Trial 1 group was more functional 

because the inexperienced subsystem designers interacted more effectively throughout 

the design process, resulting in the ability to evolve their preference models to generate 

superior feasible design solutions. Schuman, et al. [27] conducted a similar study, where 

design results obtained using conventional concurrent engineering practices were 
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compared with those obtained using Integrated System-Level Optimization and 

Concurrent Engineering (ISLOCE) method. The results obtained became the benchmark 

for the results obtained in this thesis case study using ATSV. The maximum and 

minimum objective values for Trial 1, Trial 2, and Schuman’s trial are shown in Table 4.  

Table 4. Comparison of Group ATSV Trials and Schuman’s Study 

 Min/Max Objective Values 

Trial 1 Maximum Payload – 36,335 kg 
Minimum Cost – $472,019 

Trial 2 Maximum Payload – 35,768 kg 
Minimum Cost –.$473,142 

Schuman Maximum Payload – 37,181 kg 
Minimum Cost –$471,825 

 

The study comparison shows that Schuman’s trial yielded superior objective values than 

the group ATSV, but both are acceptable. The optimal group ATSV design solutions 

were found within the last 100 function evaluations because the subsystem designers 

were only efficiently searching the feasible region at the end of the collaborative trial 

when they correctly understood the system constraints. If the group ATSV users used 

more function evaluations they may have been able to obtain design solutions equal to or 

surpassing Schumans’ solutions. Table 5 shows the number of function evaluations that 

each user used for the various subsystems for Trial1 and Trial 2. 

Table 5. Total # of Function Evaluations for Each User 

 Structures Payload Cost System Total 
Trial 1 1,375 pts. 876 pts. 2,225 pts. 2,200 pts. 6,676 pts.
Trial 2 2,150 pts. 1,400 pts. 1,375 pts. 3,345 pts. 8,270 pts.
Average 1,763 pts. 1,138 pts. 1,800 pts. 2,773 pts. 7,473 pts.
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Chapter 5 

Conclusions and Suggestions for Future Work 

As stated earlier, trade space exploration is a promising multi-user decision-making 

paradigm that provides a visual and more intuitive means for formulating, adjusting, and 

ultimately solving design optimization problems within a collaborative environment.  The 

results of this thesis indicate that collaborative engineering is an efficient method for 

solving complex, multidisciplinary design problems because subsystem designers have 

reduced responsibility, thus promoting maximum concentration on a subsystem task 

where discipline expertise and motives can be effectively utilized. This allows the 

system-level designer to mediate and guide the team decisions, rather than spending 

unnecessary time and resources exploring the entire trade space. 

 

The two trials each yielded similar findings in regards to how the designers formed 

subsystem preferences, why designers sacrifice the system design to satisfy subsystem 

objectives, and how subsystem preferences merge to obtain an optimal system design. 

The results indicate that subsystem designers formulate design preferences too early in 

the design process before accurately understanding the group objectives relative to their 

subsystem objectives causing high preference subsystem regions to “overshoot” the 

feasible system design region. Also, through observation, subsystem designers 

communicate to the system designer, but the reverse collaboration is sparse in the present 

setup. Although subsystem designers need to focus their resources on satisfying the 

defined subsystem objectives and constraints, it is counterproductive to neglect the 

system objectives during early exploration. To extend this work in the future, the trials 
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should be repeated using automatic constraint handling of system-level constraints. This 

will help to prevent the subsystem designers from exploring infeasible regions by 

restricting the sampling to only regions within the constraint boundaries.  

 

When subsystem designers make sacrifices to the system design early in the optimization 

process, the system-level designer is challenged to realign the team exploration with the 

principal design objective. This stresses the importance of effective communication 

between the system designer and the subsystem designers early and often. Specifically, 

the structures subsystem designer for Trial 2 was completely misaligned early in his 

search process, and the system level designer neglected to notify him. If an alarm was set 

early, the team would be alleviated the pain of having to re-group at the end of the 

collaborative process.  

 

As discussed previously, the outcome of the collaborative engineering process is directly 

proportional to the system designer’s ability to merge the subsystem mental models and 

to maintain a level of communication that encourages the subsystem designers to explore 

system optimal design regions. By effectively integrating system-level optimization 

strategies in the concurrent engineering process, it is possible to improve the efficiency 

and results of the overall design process. To verify these finding, the study should also be 

repeated with test problems of different sizes and complexity as well as with users of 

different experience levels to demonstrate how widely applicable – and beneficial – the 

trade space exploration process is. 
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There are several possible extensions of this work. The external fuel tank model should 

be executed with a single designer focusing on maximizing the system ROI, and then 

Pareto performance metrics should be used to quantitatively compare the collaboratively 

generated Pareto frontier with the single “human in the loop” design. This will measure 

the speed-up in the number of Pareto solutions that are obtained when multidisciplinary 

designs are optimized in a team environment. 
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