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I. � Introduction 
 

The goal of this project is to compare the optimization of NASA’s Return on Investment (ROI) 
for the Space Shuttle’s External Fuel tank using Applied Research Laboratory Trade Space 
Visualizer (ATSV), Microsoft Excel, and MatLab. The three different methods will be compared 
based on relative ease of use, computation time, insights offered, and departure from actual 
solution. 
 
Trade space exploration is a key piece to the early stages of conceptual design.  It is a study that 
examines existing designs and evaluates them against the minimum requirements of the new 
project.  A program, or tool, was developed that enables the user to compare thousands of 
different designs against multiple criteria at once in order to select the optimal design.  The tool 
is appropriately named the ARL (Applied Research Laboratory) Trade Space Visualizer (ATSV).  
The existing designs may be compared using a 3 dimensional plot that actually conveys a total of 
7 variables at once.  This is done by not only using the location of the markers in relation to the 
axis to convey 3 variables, but its size, color, orientation and transparency to convey an 
additional 4 variables.  These existing designs do not have to be actual designs; they may be 
generated using an exploration engine.   
 
The exploration engine is Java code that establishes the design variables, their limits, and how 
they are related to the other parameters for each design.  For instance, an exploration engine for a 
cubic box would generate two random variables, the width dimension of the box and the 
thickness of cardboard used.  These variables would then be used to calculate the amount of 
cardboard used to create the box, the volume inside the box, the weight of the box and, lets say, 
how many marbles the box can hold (based on size and strength of the box).  Using the designs 
created by this engine the box designer could maximize some aspect, like marble capacity, while 
minimizing another, like cost of cardboard. 
 
Microsoft Excel is a spreadsheet program available on most computers. The solver function in 
Excel uses the Generalized Reduced Gradient nonlinear optimization algorithm. An Excel add-
in, Crystal Ball was used to randomly generate points that were within the design variable 
bounds. These designs were then checked against the other constraints and  designs that met all 
constraints were ranked according to ROI.   
 
MatLab is a numerical computing environment and programming language. In this project 
MatLab was used to randomly generate points which were then checked against the constraints. 
The designs that met all constraints were then ranked according to ROI. 
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II. � Background 

Optimization Problem 
The optimization problem is formulated based on the original model as follows: 
 

Maximize: ROI  

Subject to: 
 

Bounds on Design Variables:  

 0.01 < Ln < 5.0 
 0.50 < Rn < 2.0 
 0.25 < t1n < 2.0 
 0.25 < t2n < 2.0 
 0.25 < t3n < 2.0 
 0.10 < h/Rn < 5.0 
 

Volume constraint: 
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The objective is to maximize ROI subject to the bounds on the design variables and constraints 
on the tank volume and stresses. The restriction on tank volume is an equality constraint (~3000 
m3 +/- 100 m3), which creates an interesting tradeoff: the tank volume is dependent upon three 
parameters (L, R, h/R) meaning that any two parameters can be free while the third is dependent 
upon the others. No restriction is placed on which parameter is chosen as dependent however. 
Finally, inequality constraints are placed on the maximum allowable component stress and on the 
first bending moment of the tank. The equivalent stress experienced by each component cannot 
exceed the maximum allowable stress of the material is used. Also, the first bending moment of 
the tank must be kept away from the vibrational frequencies experienced during launch to avoid 
any potential failures. 
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III. Methodology 
 

The collaborative design approach taken by this team can perhaps best be described as "divide 
and conquer." The bulk of the ATSV work was undertaken by one individual. The Excel portion 
was assigned to another individual.  The third person decided to work on the problem in MatLab. 
The problem was essentially solved separately with weekly hour long meetings to compare 
results, critique methods, overcome setbacks, and suggest improvements. On future projects, it 
would probably be beneficial for the entire team to get together and work on their sections in the 
same room, so that results from one portion could be checked or refined in another portion. Part 
of the reason this wasn't done was due to the different learning curves among the team members.  
The ideal solution seems to be a mix of Excel's quick small calculations and ATSV's powerful 
visualization tools. ATSV seems analogous to finding a needle in a haystack by laying out all the 
stalks side by side and the Excel solver is reaching into the stack and searching by feel.  
 

Excel  
Two methods of solving the fuel tank problem in Excel were used. The first method was the 
solve function available in the Tools menu. The second method is a third party add-in called 
CrystalBall.  

Excel Solver 
The solve function in Excel uses the generalized reduced gradient algorithm. The advantages to 
using the Excel solver are its speed and cost (it comes free with Excel). However, it is not the 
most powerful optimization package available. The advantages of the GRG algorithm are its 
speed and stability the disadvantages include a tendency to find local rather than global maxima. 

Crystal Ball 
Crystal Ball is a simulation tool for performing Monte Carlo analysis. The spread sheet with the 
optimization problem was open in Crystal Ball. The variables were assumed to be uniformly 
distributed across the intervals given in the problem description. The constraint cells and the ROI 
cells were set as outputs and the program was started. The program could only perform 
3,549,900 iterations due to the amount of memory available. This took 1 hour and 25 minutes.  
There was too much data and Excel was not able to extract it. So, 1,000,000 iterations were run 
which took 24 minutes, the data was extracted and the runs that violated the constraints were 
discarded. Only two different valid solutions were found after 5 runs of 1,000,000 iterations. 
 

MatLab 
In an attempt to explore a different approach to solving the external fuel tank problem, MatLab 
was used to randomly generate designs in order to populate the problem design space. The code 
is similar in function to ATSV in that it generates designs and refines the bounds in which 
designs are created. It differs in that it needs a discrete number of designs to generate and that it 
automatically refines the bounds rather than the user “brushing” the design space. But what is 
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sacrificed in terms of control is gained through time efficient computation which means faster 
population of the trade space. 

Code Operation 
The program randomly generates values of Ln, Rn, t1n, t2n, and t3n, between the design bounds 
given in the description of the problem. The program uses the following formula to create the 
random design parameters. 

X=a+h(b-a) 
Where X is the random variable, a and b are the lower and upper design boundaries, respectfully, 
and h is a randomly generated number that satisfies 0≤ h≤ 1. 
 
The program then solves for an h-R ratio based on a constant volume of 2826 m³. It is important 
to note that by doing this there is a potential for a more optimal design to be generated within the 
2926±100m³ range. If the h-R ratio passes between the h-R design boundaries, then all the 
stresses and vibration are calculated. If the resulting stresses and vibration values pass the design 
criteria then ROI is calculated. Now Ln, Rn, t1n, t2n, and t3n, hR and ROI can be stored as a 
usable design. If any of the design criteria is not met, then a set of new random numbers are 
generated and the process is repeated until the desired number of designs are reached. 
 
The user has four inputs to this program; 
n= number of USABLE designs the program will generate for each boundary refinement 

(explained below) 
m= number of times the program executes refinements on the variable bounds, for example 

changing the bound of Ln from .01<Ln<5 (from problem statement) to .5<Ln<2 
(tightening the bounds around the optimal design). How the program chooses these 
values is determined by the next two variables. 

x_max= first boundary refinement width (percentage) 
x_min= last boundary refinement width (percentage) 

 
The program iterates closer and closer to the "optimal" boundary range for the design variables. 
Explanation of this process may be more easily conveyed through an example. Assume 
n=10,000, m=5, x_max=10, and x_min=1.  The program generates 10,000 designs (n), within the 
initial boundaries defined by the problem statement.  Then the top 10% (x_max) of the designs 
are looked at. The max and min of these top 10% are found for each design variable (Ln, Rn, t1n, 
t2n, t3n and hR). These maximums and minimums then become the new design boundaries and 
another 10,000 designs are generated within these new boundaries. Now the program begins a 
linear progression from 10% down to 1% in m steps, rounding up to the nearest integer. So the 
next step would be 8%. Now the top 8% are looked at and the boundaries are redefined and 
another 10,000 designs are generated within the new boundaries... then 6%... then... this process 
occurs a total of m times so the last time the top 1% (x_min) of the designs are look at and the 
final 10,000 designs are generated within this final boundary. This effect of boundary refinement 
is shown in Figure 1 for a case of 50,000 designs with 5 boundary refinements. The total number 
of designs generated within the design space is equal to n*m, in this case 50,000. 
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Figure 1: Parameter Boundary Refinement 

 

Analysis 
The advantage of this boundary refinement is that computation time is more efficient then 
without boundary refinement and there are higher quality designs generated. From Figure 1, it is 
clear that increasing the number of generated designs within the design space increases 
computation time at an exponential rate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So by generating smaller sets of designs and grouping them into the design space it can be more 
computationally efficient than just generating one large set of designs. This is shown in Figure 1 
where computation time for any quantity of designs decreases as m increases though 
computation time decreases at a decreasing rate.  
 

Figure 1: Design Population Time Figure 1: Computation Time for Design Space Population 
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This increase in efficiency is because the computer rejects fewer designs due to "better" 
boundary ranges. For single iterations, m=1, the pass rate for designs is about 2.4%, when m=5, 
the pass rate increases to about 6.8%. This means the computer has to throw out fewer designs 
and therefore does not have to crunch numbers as long in order to get n number of usable 
designs. 
 
Another advantage to boundary refinements is that a greater number of designs generated have a 
higher ROI value. For instance in Figure 1, 50,000 designs were generated without boundary 
refinement. It can be seen from the histogram that the average of the distribution is 
approximately -.55 with >1% of the distribution above zero ROI. In Figure 1, 50,000 designs 
were generated with 5 boundary refinements. Under this condition the average of the distribution 
is approximately -.2 with approximately 5% of the distribution above zero ROI. 
 
 

The disadvantage of this method is that if the design space is not adequately populated the 
before the first boundary refinement then the most optimal range for the design could potentially 
be cut out and the design space will not generate the best designs. Another disadvantage of this 
program is that generated designs are not stored globally, meaning that once the program is 
turned on to run the designs generated before hand are erased and lost completely. It is possible 
to fix this through storing the data globally rather than locally and would be easy to implement. 
This was not deemed a necessary expenditure of time for this class since the purpose is to 
evaluate this programs performance with respect to ATSV and not to actually generate a 
shopping design space. 
 
 
 

 

ATSV 
On the first attempt at using ATSV 150 points were generated randomly.  Then the brush settings 
were adjusted to maximize ROI and using the preference section of the exploration engine about 
300 more points were generated.  It wasn’t until this time that the volume, stress and vibration 
constraints were found.  After changing the brush settings to only include the designs that meet 
the constraints, it was found that there were no feasible designs in this region.  A target was then 
created at TankVolconst=0, SphereStressConst=0 and Cyl.str.const=0.  This was run for about an 
hour and it generated a total of 18 feasible points.  This session took about 2 hours. 
 
For the second attempt the exploration engine was run longer to produce more points.  First it 
generate 5,000 points blindly (4 of which met all constraints).  After observing the dataset, the 
range of Ln was changed to .01-1.5 and the exploration engine generated 5,000 more points (9 of 
which met all constraints).  The brush preferences settings were then changed to minimize the 
volume constraint (100% preference), minimize the value of t1n (50% preference), and minimize 
t3n (50% preference) based on trend observation.  The preference function was looped for about 
15 minutes generating 5,000 points for a total of 15,000 points.  Only 2 feasible points were 

Figure 1: ROI Histogram with Boundary Refinement Figure 1: ROI Histogram w/o Boundary Refinement 
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generated during this run.  The t1n and t3n brush preferences were then removed and 5,250 more 
points were generated.  This yielded 28 more feasible designs for a total of 43 designs that met 
all the problem constraints.  Based on this second attempt at using the program the highest ROI 
was 0.151. 
 
Based on the results from the second trial it was decided to minimize the tank volume constraint 
and let the exploration engine run for a very long time so that it might yield a generous number 
of feasible designs.  After the preference function based population was set, it was run overnight.  
It ran for a total of 20 hours 2.5 minutes and generated 302,556 points with only 571 feasible 
points.  That is a pass rate of less than 0.2%.  When the run was terminated it was impossible to 
view all the points (ATSV kept giving a memory error) even in the list view. So the log was 
saved and the visible points (feasible points) were also saved to a file.  Rather than having to 
save the log it would have been useful to have a “save all data” button that would create a .txt 
file of all of the points.  Notepad was then used to count the number of log entries to get the total 
amount of points generated and was able to open the visible points file with ATSV after 
restarting the program.  The biggest trend observed with the feasible points was that as t1n goes 
down ROI goes up.  Most other values seemed to be pretty random.  Based on this attempt the 
highest ROI was 0.1924. 
 
While running these trials the low yield rate of feasible designs (<0.2%) was discouraging.  So 
an attempt was made to change the Java code of the exploration engine.  The goal was to 
eliminate one of the major contributors to the failure of design points, the tank volume 
constraint.  This was done by removing the h-R ratio from the independent variables and making 
it dependant on the others through the volume constraint.  With this reprogrammed there should 
be no points generated that do not meet the tank volume constraint.  After the code was 
reprogrammed an initial test was run.  Since there were no limits applied to the h-R ratio some of 
the values for the ROI and other calculations were negative infinity or 0.  Based on the trend 
shown by the previous trial the limits of the variables were adjusted.  The ranges were changed 
to 0.5<Ln<3, 0.5<Rn<1, 0.25<t1n<1, 0.25<t2n<2 and 0.25<t3n<2.  This was then used to 
generate 406,000 points.  When the brush settings were applied, only 19 feasible points were 
created.  This was largely accredited to the brush settings for the h-R ratio.  Since the h-R ratio 
needed to be within the specified range, most of the design points became infeasible.  So, by 
eliminating one aggressive constraint, a new aggressive constraint was created. 
 
The design point created by the third approach (ROI of 0.1924) was the best that ATSV 
produced.  The values of this design point were then plugged into Excel.  By minimizing each 
value one by one while meeting all the constraints a new design point with a higher ROI (ROI of 
.306579) was produced.  The order in which the input variables were minimized was Rn, Ln, h/R, 
t1n, t2n and lastly t3n. 
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IV. � Results 

Excel  

Excel Solver 
The Generalized Reduced Gradient algorithm used in the Excel solver function is method of 
finding the optimum by “stepping” away from an initial point until the slope of the ROI surface 
becomes zero or negative. This method is robust in that it tends to give a result even with 
nonlinear problems; however there is no way of knowing if the resulting point is a local or global 
maximum. The optimum found using this method is dependent upon the initial point. As can be 
seen in Table 1 the Excel solver found two maxima: a local maximum, ROI = 0.23, and a 
possible global maximum, ROI = 0.32. The Excel solver is very fast, nearly instantaneous.  
 
Table 1: Excel Solver results for ten trials 

 

CrystalBall 
Since the Excel solver does not look at the entire tradespace, CrystalBall was used to randomly 
generate points in the hopes of either finding a global maximum or finding a design to use as an 
initial point in Excel. As can be seen in Table 2, all but one of the maxima found using 
CrystalBall have smaller ROI’s than the best design found using the solver. This may be partly 
due to the way the solver allowed the constraints to be very, very small positive numbers 
(1*1011) while all the constraints in CrystalBall were less than or equal to zero. 
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Table 2: Crystal Ball Results 

 
 

Comparison 
Table 3 shows the best design points created by all four methods along with the two design 
points created by making minor adjustments to the MatLab and ATSV results. 
 
Table 3: Results Comparison 
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V. � Conclusion 
 
Analysis 
By using several different programs and methods to find optimal solutions to the tightly 
constrained problem a deep understanding for the relationships was created.  Although Excel 
Solver produced the maximum ROI, other local maximums were found using the other 
programs. 
 
Based on the experience of the group, it was decided that Excel was the easiest  way to solve this 
specific problem.  The problem was a tightly constrained single objective optimization problem 
that, due to its nature, made Excel the most powerful tool for solving it.  If there were multi-
objectives, ATSV would most definitely come out on top. 
 
For problem understanding, Excel was scored at a 3 (out of 5) due to its simplified outputs.  
MatLab was scored at a 5 in this area since the code had to be programmed by the user and the 
visual capabilities of the program really helped.  ATSV was scored at 4 because of its great 
ability to show, visually, the relationships between the variables and the objective. 
 
For visualization capabilities of the software, Excel was scored at a 1 because its output was 
limited to a single design point.  MatLab was scored at a 3 and ATSV was scored at a 5.  ATSV 
really shines when it comes to visualizing the problem once there are enough points generated in 
the feasible design space. 
 
The ATSV training was great for the time that was provided.  If it was possible for a follow up 
session or workshop the additional experience and knowledge gained would have been valuable.  
That’s why the training was rated at a 3. 
 
The problem description was rated at a 4 only because there wasn’t a complete optimization 
problem statement that included all the equations used.  This made it difficult for MatLab 
programming and Java reprogramming. 
 
ATSV would be a very useful product for examining multi-objective design problems.  It also 
would be useful for comparing existing products on the market for purchase.  The design by 
shopping method is interesting and is probably very useful in many fields. 
 
Recommendations 
ATSV does not have a “save all data“ or a “save project” button.  This would be very useful.  If 
it was possible to simply save all of the design points in a .txt file to open it later, or with a 
different program without having to reset all of my brushes would be very useful.  Also, if I was 
able to save the entire project that would be wicked awesome!  If I were able to save my project 
(including brush settings, exploration engine settings, data sets and all visible windows with their 
settings) I would be able to pick up exactly where I left off at a later time without having to reset 
everything. 



11 

 
Another useful function for ATSV would be a way to set the limits on the color scale.  Using the 
options to change the range of the axis is great, but being able to change the range on the color 
scale would be very beneficial. As it is, it doesn’t matter what your brushes are set to, the color 
scale stays the same so all of your points might appear red which does not help. 
 
I liked being able to select design points on the different displays and have their information 
come up.  What I didn’t like was the ability to select non-visible design points that were not 
included in the brush preferences.  This made it difficult to select a feasible point that was 
surrounded by invisible non-feasible points.  An option to only select visible points would be 
appreciated. 
 
One of the greatest features that would make ATSV a fuller application would be the addition of 
an exploration engine creation tool, which does not require any manual code generation.  Since 
most exploration engines are going to have the same layout (optimization problem layout) it 
should be relatively easy to create a “wizard” type tool or template.  First, it would ask for the 
number of independent variables (inputs), their names, and their ranges.  Then the number of 
dependant variables (outputs), their names and how they are calculated in relation to the inputs.  
The last step would be to include the problem constraints in the exploration engine.  When the 
code for the engine is generated it would have an auto-check to verify if the design point meets 
all the constraints, if not, then the point would be trashed and not fully generated.  The 
exploration engine would then display the number of trashed points after the run was complete.  
This would greatly conserve time and memory of the computing system.  By having an 
exploration engine that is easily changed through the creation tool, you could relax your 
constraints on the fly, or change any other parameter when needed without having to search 
through lines of code. 
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VI. � Appendix A 
MatLab Code 
 
% Design Optimization of External Fuel Tank for Space Shuttle 
    % Objective is to maximize return on investment (ROI) through design 
    % optimization of tank geometry. 
  
clc; clear all; close all; 
tic 
  
%Operator Controls 
n=10000;         %Number of designs (needs to be an integer) 
m=20;            %Number of bound refinements (needs to be an integer) 
x_max=10;         %Variable Bound Redefinition Width, min and max 
x_min=1;           
  
%Model Variables 
k=6;                            %Material cost per unit mass ($/kg) 
lamda=12;                       %Seam cost per unit length ($/m) 
P=70;                           %Tank pressure (N/cm^2) 
P_nom=30000;                    %Nominal payload (kg) 
sigma_y=40000;                  %Yeild stress for tank material (N/cm^2) 
rho=.0028;                      %Material density (kg/cm^3) 
Pi=3.1416; 
t=m+1;                          %Count Down Indicator 
  
%Nominal Tank Geometry Varibles 
L_nom=4150;                     %Cylinder length (cm) 
R_nom=450;                      %Tank radius (cm) 
t1_nom=0.7;                     %Cylinder thinkness (cm) 
t2_nom=0.8;                     %Sphere thickness (cm) 
t3_nom=0.75;                    %Cone thickness (cm) 
hR_nom=1;                       %h/R cone height to radius ratio 
j=0;                            %j is equal to # of rejected designs 
  
%Variable Bounds 
a_L=.01;                    %Minimum value for tank Legnth 
b_L=1.2;                    %Maximum value for tank Legnth 
a_R=.5;                     %Minimum value for tank Radius 
b_R=2;                      %Maximum value for tank Radius 
a_hR=.25;                   %Minimum value for Cone height radius ratio 
b_hR=5;                     %Maximum value for Cone height radius ratio 
a_t1=.95;                   %Minimum value for cylinder thickness 
b_t1=2;                     %Maximum value for cylinder thickness 
a_t2=.95;                   %Minimum value for sphere thickness 
b_t2=2;                     %Maximum value for sphere thickness 
a_t3=.9;                    %Minimum value for cone thickness 
b_t3=2;                     %Maximum value for cone thickness 
Bounds=[a_L,b_L,a_R,b_R,a_t1,b_t1,... 
    a_t2,b_t2,a_t3,b_t3,a_hR,b_hR]; 
  
for q=1:m; 
    if m>1; 
        x=round(x_min+(m-q)/(m-1)*(x_max-x_min));          %variable boundry correction window 
width 
    end 
    for i=1:n; 
  
        %User changes normalized values 
        %Tank Geometry Variables...Non dimenstionalized (input varibales) 
        L_non(i,1)=a_L+rand(1)*(b_L-a_L);        %Cylinder length (unitless) 
        R_non(i,1)=a_R+rand(1)*(b_R-a_R);        %Tank radius (unitless) 
  
        %Actual Tank Geometry Variables 
        L(i,1)=L_non(i,1)*L_nom;            %Cylinder length (cm) 
        R(i,1)=R_non(i,1)*R_nom;            %Tank radius (cm) 
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        h(i,1)=(2826.4*100^3-2/3*Pi*R(i,1)^3-Pi*R(i,1)^2*L(i,1))/(1/3*Pi*R(i,1)^2); %Cone height 
dependent on a volume of 3000 m^3 
        hR(i,1)=h(i,1)/R(i,1);                  %h/R cone height to radius ratio 
  
        hR_non(i,1)=hR(i,1);                    %h/R cone height to radius ratio (unitless) 
            
        t1_non(i,1)=a_t1+rand(1)*(b_t1-a_t1);     %Cylinder thinkness (unitless) 
        t2_non(i,1)=a_t2+rand(1)*(b_t2-a_t2);     %Sphere thickness (unitless) 
        t3_non(i,1)=a_t3+rand(1)*(b_t3-a_t3);     %Cone thickness (unitless) 
        t1(i,1)=t1_non(i,1)*t1_nom;               %Cylinder thinkness (cm) 
        t2(i,1)=t2_non(i,1)*t2_nom;               %Sphere thickness (cm) 
        t3(i,1)=t3_non(i,1)*t3_nom;               %Cone thickness (cm) 
        I(i,1)=sqrt(R(i,1)^2+(hR(i,1)*R(i,1))^2); %Cone slant length 
  
        %Stress Analysis 
        sigma_hoop_cyl=P*R(i,1)/t1(i,1); 
        sigma_long_cyl=P*R(i,1)/(2*t1(i,1)); 
        sigma_cyl=sqrt(sigma_hoop_cyl^2+sigma_long_cyl^2-sigma_hoop_cyl*sigma_long_cyl); 
        sigma_sph=P*R(i,1)/t2(i,1); 
        sigma_hoop_con=P*R(i,1)/t3(i,1); 
        sigma_long_con=P*R(i,1)/(2*t3(i,1))*I(i,1)/h(i,1); 
        sigma_con=sqrt(sigma_hoop_con^2+sigma_long_con^2-sigma_hoop_con*sigma_long_con); 
  
        %Vibration Analysis 
        Cyl_area=2*Pi*R(i,1)*L(i,1); 
        Sph_area=2*Pi*R(i,1)^2; 
        Con_area=Pi*R(i,1)*I(i,1); 
        W=(Cyl_area*t1(i,1)+Sph_area*t2(i,1)+Con_area*t3(i,1))*rho; 
        Xi=10000*sqrt(R(i,1)^3*t1(i,1)/(W*(L(i,1)+R(i,1)+h(i,1))^3));        %Vibration factor 
        Xi_nom=1.33627;                %Nominal vibraiton factor 
  
            while hR(i,1)<=a_hR || hR(i,1)>=b_hR || sigma_cyl>=sigma_y || sigma_sph>=sigma_y || 
sigma_con>=sigma_y || Xi<=Xi_nom; 
                L_non(i,1)=a_L+rand(1)*(b_L-a_L);       %Cylinder length (unitless) 
                R_non(i,1)=a_R+rand(1)*(b_R-a_R);       %Tank radius (unitless) 
                L(i,1)=L_non(i,1)*L_nom;                %Cylinder length (cm) 
                R(i,1)=R_non(i,1)*R_nom;                %Tank radius (cm) 
                h(i,1)=(2826.4*100^3-2/3*Pi*R(i,1)^3-Pi*R(i,1)^2*L(i,1))/(1/3*Pi*R(i,1)^2); %Cone 
height dependent on a volume of 3000 m^3 
                hR(i,1)=h(i,1)/R(i,1);                  %h/R cone height to radius ratio 
                hR_non(i,1)=hR(i,1);                    %h/R cone height to radius ratio 
(unitless) 
                t1_non(i,1)=a_t1+rand(1)*(b_t1-a_t1);     %Cylinder thinkness (unitless) 
                t2_non(i,1)=a_t2+rand(1)*(b_t2-a_t2);     %Sphere thickness (unitless) 
                t3_non(i,1)=a_t3+rand(1)*(b_t3-a_t3);     %Cone thickness (unitless) 
                t1(i,1)=t1_non(i,1)*t1_nom;               %Cylinder thinkness (cm) 
                t2(i,1)=t2_non(i,1)*t2_nom;               %Sphere thickness (cm) 
                t3(i,1)=t3_non(i,1)*t3_nom;               %Cone thickness (cm) 
                I(i,1)=sqrt(R(i,1)^2+(hR(i,1)*R(i,1))^2); %Cone slant length 
                sigma_hoop_cyl=P*R(i,1)/t1(i,1); 
                sigma_long_cyl=P*R(i,1)/(2*t1(i,1)); 
                sigma_cyl=sqrt(sigma_hoop_cyl^2+sigma_long_cyl^2-sigma_hoop_cyl*sigma_long_cyl); 
                sigma_sph=P*R(i,1)/t2(i,1); 
                sigma_hoop_con=P*R(i,1)/t3(i,1); 
                sigma_long_con=P*R(i,1)/(2*t3(i,1))*I(i,1)/h(i,1); 
                sigma_con=sqrt(sigma_hoop_con^2+sigma_long_con^2-sigma_hoop_con*sigma_long_con); 
                Cyl_area=2*Pi*R(i,1)*L(i,1); 
                Sph_area=2*Pi*R(i,1)^2; 
                Con_area=Pi*R(i,1)*I(i,1); 
                W=(Cyl_area*t1(i,1)+Sph_area*t2(i,1)+Con_area*t3(i,1))*rho; 
                Xi=10000*sqrt(R(i,1)^3*t1(i,1)/(W*(L(i,1)+R(i,1)+h(i,1))^3)); 
                j=j+1;                            %Counter for # of rejected designs 
            end 
  
        % Surface and Volume Analysis 
        Sph_area=2*Pi*R(i,1)^2; 
        Sph_vol=2/3*Pi*R(i,1)^3; 
        Cyl_area=2*Pi*R(i,1)*L(i,1); 
        Cyl_vol=Pi*R(i,1)^2*L(i,1); 
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        Con_area=Pi*R(i,1)*I(i,1); 
        Con_vol=1/3*Pi*R(i,1)^2*h(i,1); 
  
        Tank_area=Sph_area+Cyl_area+Con_area; 
        Tank_vol=Sph_vol+Cyl_vol+Con_vol; 
  
        Tank_area_nom=13905910;         %Nominal tank surface area (cm^2) 
        Tank_vol_nom=2926400400;        %Nominal tank volume (cm^3) 
  
        %Weld Seam Lengths 
        l_cyl=4*L(i,1); 
        l_sph=2*Pi*R(i,1); 
        l_con=4*I(i,1); 
        l_cyl_sph=2*Pi*R(i,1); 
        l_cyl_con=2*Pi*R(i,1); 
        l=l_cyl + l_sph + l_cyl_sph... 
            + l_cyl_con + l_con;  %Total length of weld on tank (cm) 
  
        %Tank Weight 
        W=(Cyl_area*t1(i,1)+Sph_area*t2(i,1)+Con_area*t3(i,1))*rho; 
        W_nom=27737;                                      %Nominal tank weight (kg) 
  
        %Material Costs 
        f1=1.15-.33*(t1(i,1)-.1)+.165*(t1(i,1)-.1)^2;     %Weight-Cost function for material of 
cylinder 
        f2=1.15-.33*(t2(i,1)-.1)+.165*(t2(i,1)-.1)^2;     %Weight-Cost function for material of 
sphere 
        f3=1.15-.33*(t3(i,1)-.1)+.165*(t3(i,1)-.1)^2;     %Weight-Cost function for material of 
cone 
        MC_cyl=Cyl_area*t1(i,1)*rho*k*f1;                 %Material cost of cylinder 
        MC_sph=Sph_area*t2(i,1)*rho*k*f2;                 %Material cost of sphere 
        MC_con=Con_area*t3(i,1)*rho*k*f3;                 %Material cost of cone 
        MC=MC_cyl+MC_sph+MC_con;                          %Total Material cost 
  
        %Seam Cost 
        t_avg_cyl_sph=(t1(i,1)+t2(i,1))/2;                %Average of cylinder and sphere 
thickness 
        t_avg_cyl_con=(t1(i,1)+t3(i,1))/2;                %Average of cylinder and cone thickness 
        f4=1.2-.42*(t1(i,1)-.1)+.25*(t1(i,1)-.1)^2;       %Seam length cost function for cylinder 
        f5=1.2-.42*(t2(i,1)-.1)+.25*(t2(i,1)-.1)^2;       %Seam length cost function for sphere 
        f6=1.2-.42*(t3(i,1)-.1)+.25*(t3(i,1)-.1)^2;       %Seam length cost function for cone 
        f7=1.2-.42*(t_avg_cyl_sph-.1)+.25*(t_avg_cyl_sph-.1)^2; %Seam length cost function for 
cylinder and sphere 
        f8=1.2-.42*(t_avg_cyl_con-.1)+.25*(t_avg_cyl_con-.1)^2; %Seam length cost function for 
cylinder and cone 
        SC_cyl=lamda*l_cyl*f4; 
        SC_sph=lamda*l_sph*f5; 
        SC_con=lamda*l_con*f6; 
        SC_cyl_sph=lamda*l_cyl_sph*f7; 
        SC_cyl_con=lamda*l_cyl_con*f8; 
        SC=SC_cyl+SC_sph+SC_con+SC_cyl_sph+SC_cyl_con;  %Total seam cost 
  
        %Total Cost 
        C=MC+SC; 
        C_nom=511424.2; 
  
        %Aerodynamic Analysis 
        A=Pi*R(i,1)^2;                 %Tank cross sectional area 
        P1=14300;                      %Given parameter 
        P2=5000;                       %Given parameter 
        Ao=636174;                     %Given parameter 
        D=.25+1.4*exp(1-1.6*(1+(hR(i,1)-1)/1)); %Cone drag fucntion 
        Delta_P=-P1*(A-Ao)/Ao-P2*(D-1.018336)/1.018336-P2*(Tank_area-
Tank_area_nom)/Tank_area_nom; %Change in payload capacity 
  
        %Return on Investment 
        C_launch=599488576+C;                       %True launch cost: fixed cost + tank cost 
        P_launch=P_nom-(W-W_nom)+Delta_P;           %Launch payload 
        C_customer=21000*P_launch;                  %Customer cost to launch payload 
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        roi(i,1)=(C_customer-C_launch)/C_launch;    %RETURN ON INVESTMENT!!! 
  
        ROI(i+(q-1)*n,1)=roi(i); 
        ROI(i+(q-1)*n,2)=L_non(i); 
        ROI(i+(q-1)*n,3)=R_non(i); 
        ROI(i+(q-1)*n,4)=t1_non(i); 
        ROI(i+(q-1)*n,5)=t2_non(i); 
        ROI(i+(q-1)*n,6)=t3_non(i); 
        ROI(i+(q-1)*n,7)=hR(i); 
    end 
     
    %Sort ROI for best design 
    ROI_sorted=sortrows(ROI,1); 
    if m>1; 
    %Redifine variable bounds 
    a_L=min(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),2));                    
%Minimum value for tank Legnth 
    b_L=max(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),2));                      
%Maximum value for tank Legnth 
    a_R=min(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),3));                     
%Minimum value for tank Radius 
    b_R=max(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),3));                      
%Maximum value for tank Radius 
    %a_t1=min(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),4));                   
%Minimum value for cylinder thickness 
    b_t1=max(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),4));                     
%Maximum value for cylinder thickness 
    %a_t2=min(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),5));                   
%Minimum value for sphere thickness 
    b_t2=max(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),5));                     
%Maximum value for sphere thickness 
    %a_t3=min(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),6));                   
%Minimum value for cone thickness 
    b_t3=max(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),6));                     
%Maximum value for cone thickness 
    a_hR=min(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),7));                    
%Minimum value for Cone height radius ratio 
    b_hR=max(ROI_sorted((1-x/100)*length(ROI_sorted):length(ROI_sorted),7));                     
%Maximum value for Cone height radius ratio 
    Bounds(q+1,:)=[a_L,b_L,a_R,b_R,a_t1,b_t1,... 
        a_t2,b_t2,a_t3,b_t3,a_hR,b_hR]; 
    end 
t=t-1 
end 
  
%Best Design 
[ROI_best,s]=max(ROI(:,1)); 
  
L_best=ROI(s,2); 
R_best=ROI(s,3); 
t1_best=ROI(s,4); 
t2_best=ROI(s,5); 
t3_best=ROI(s,6); 
hR_best=ROI(s,7); 
ROI_best 
  
Best=[ROI_best;L_best;R_best;t1_best;t2_best;t3_best;hR_best]; 
  
%ROI histogram; number of bins is 10% of the number of designs (n) 
hist(ROI(:,1),.1*n,'FontSize',18); set(gcf,'Color','w'); xlabel('Return on 
Investment','FontSize',20); ylabel('Occurance','FontSize',20); title('Return on Investment 
Histogram','FontSize',24) 
  
%variable distribustion; 0 -> worst design, n -> best design 
  
figure; plot(1:n*m,ROI_sorted(:,2),'.'); set(gcf,'Color','w'); title('Tank Length 
Distribution','FontSize',24); xlabel('Low ROI <------------------------------ Good ROI ----------
--------------------> Best ROI','FontSize',20); ylabel('Normalized Tank Length','FontSize',20); 
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figure; plot(1:n*m,ROI_sorted(:,3),'.'); set(gcf,'Color','w'); title('Tank Radius 
Distribution','FontSize',24); xlabel('Low ROI <------------------------------ Good ROI ----------
--------------------> Best ROI','FontSize',20); ylabel('Normalized Tank Radius','FontSize',20); 
figure; plot(1:n*m,ROI_sorted(:,4),'.'); set(gcf,'Color','w'); title('Cylinder Thickness 
Distribution','FontSize',24); xlabel('Low ROI <------------------------------ Good ROI ----------
--------------------> Best ROI','FontSize',20); ylabel('Normalized Cylinder 
Thickness','FontSize',20); 
figure; plot(1:n*m,ROI_sorted(:,5),'.'); set(gcf,'Color','w'); title('Sphere Thickness 
Distribution','FontSize',24); xlabel('Low ROI <------------------------------ Good ROI ----------
--------------------> Best ROI','FontSize',20); ylabel('Normalized Sphere 
Thickness','FontSize',20); 
figure; plot(1:n*m,ROI_sorted(:,6),'.'); set(gcf,'Color','w'); title('Cone Thickness 
Distribution','FontSize',24); xlabel('Low ROI <------------------------------ Good ROI ----------
--------------------> Best ROI','FontSize',20); ylabel('Normalized Cone 
Thickness','FontSize',20); 
figure; plot(1:n*m,ROI_sorted(:,7),'.'); set(gcf,'Color','w'); title('Cone Height Radius Ratio 
Distribution','FontSize',24); xlabel('Low ROI <------------------------------ Good ROI ----------
--------------------> Best ROI','FontSize',20); ylabel('Cone Height Radius Ratio','FontSize',20); 
  
%Change in Variable Boundary 
if m>1; 
figure;  
hold; plot(1:m+1,Bounds(:,1),'LineWidth',2);    plot(1:m+1,Bounds(:,2),'LineWidth',2); %Length 
plot(1:m+1,Bounds(:,3),'k','LineWidth',2);      plot(1:m+1,Bounds(:,4),'k','LineWidth',2); % 
plot(1:m+1,Bounds(:,5),'r','LineWidth',2);      plot(1:m+1,Bounds(:,6),'r','LineWidth',2); % 
plot(1:m+1,Bounds(:,7),'g','LineWidth',2);      plot(1:m+1,Bounds(:,8),'g','LineWidth',2); % 
plot(1:m+1,Bounds(:,9),'-- k','LineWidth',2);   plot(1:m+1,Bounds(:,10),'-- k','LineWidth',2); % 
plot(1:m+1,Bounds(:,11),':','LineWidth',2);     plot(1:m+1,Bounds(:,12),':','LineWidth',2); % 
set(gcf,'Color','w');  
title('Parameter Boundary Refinement','FontSize',24); xlabel('Boundary 
Refinements','FontSize',20); ylabel('Variable Value (Normalized)','FontSize',20) 
legend('L_m_a_x','L_m_i_n','R_m_a_x','R_m_i_n','t1_m_a_x','t1_m_i_n','t2_m_a_x','t2_m_i_n','t3_m_
a_x','t2_m_i_n','hR_m_a_x','hR_m_i_n'); 
end 
  
%Percent of passed designs wrt rejected designs 
J=n*m/(n*m+j)*100   
  
toc 
  
%Computation Time (Collected Data through multiple iteration of this program) 
T=interp1([100 500 1000 5000 10000 25000 50000 100000],[2.13 2.78 3.66 12.51 29.68 127.8 469.7 
2175],0:100:200000,'spline'); 
figure; plot([100 500 1000 5000 10000 25000 50000 100000],[2.13 2.78 3.66 12.51 29.68 127.8 469.7 
2175],'o'); 
hold; plot(0:100:200000,T,'LineWidth',2); set(gcf,'Color','w');  
title('Design Population Time','FontSize',24); xlabel('Number of Generated Random 
Designs','FontSize',20); ylabel('Time to Compute (sec)','FontSize',20); 
  
figure; hold on; 
  
        T=interp1([100 500 1000 5000 10000 25000 50000],[2.13 2.78 3.66 12.5 29.68 127.8 
469.7],0:100:125000,'spline'); 
        plot(0:100:125000,T,'LineWidth',2); 
        T=interp1([100*5 500*5 1000*5 5000*5 10000*5 25000*5],[3.16 4.2 6.2 55.1 212.9 
1134.9],0:100:125000,'spline'); 
        plot(0:100:125000,T,'k','LineWidth',2); 
        T=interp1([100*10 500*10 1000*10 5000*10 10000*10],[3.4 6 12 185.5 
722.9],0:100:125000,'spline'); 
        plot(0:100:125000,T,'r','LineWidth',2);        
        T=interp1([100*20 500*20 1000*20 2500*20 5000*20],[4.05 11.78 33.5 182.5 
695],0:100:125000,'spline'); 
        plot(0:100:125000,T,'g','LineWidth',2); 
        T=interp1([100*50 500*50 1000*50 5000*50],[5.84 50.6 181.9 4183],0:100:125000,'spline'); 
        plot(0:100:125000,T,'y','LineWidth',2);    
  
        plot([100 500 1000 5000 10000 25000 50000],[2.13 2.78 3.66 12.5 29.68 127.8 
469.7],'o','LineWidth',2); 
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        plot([100*5 500*5 1000*5 5000*5 10000*5 25000*5],[3.16 4.2 6.2 55.1 212.9 1134.9],'k 
o','LineWidth',2); 
        plot([100*10 500*10 1000*10 5000*10 10000*10],[3.4 6 12 185.5 722.9],'r 
o','LineWidth',2); 
        plot([100*20 500*20 1000*20 2500*20 5000*20],[4.05 11.78 33.5 182.5 
695],'g','LineWidth',2); 
        plot([100*50 500*50 1000*50],[5.84 50.6 181.9],'y','LineWidth',2); set(gcf,'Color','w'); 
  
        xlabel('Total Number of Designs; m*n','FontSize',20); ylabel('Computation Time 
(s)','FontSize',20); title('Computation Time for Design Space Popullation','FontSize',24) 
        legend('m=1','m=5','m=10','m=20','m=50'); 
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VII. � Appendix B 
Variable parameters plotted WRT Return on Investment for a design population of 50000 with no 
boundary refinements. 
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VIII. � Appendix C 
Variable parameters plotted WRT Return on Investment for a design population of 50000 with 5 
boundary refinements. 
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