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ecent advancements in computing power and speed provide op-
ortunities to revolutionize trade space exploration, particularly
or the design of complex systems such as automobiles, aircraft,
nd spacecraft. In this paper, we introduce three visual steering
ommands to support trade space exploration and demonstrate
heir use within a powerful data visualization tool that allows
esigners to explore multidimensional trade spaces using glyph,
D and 2D histograms, 2D scatter, scatter matrix, and parallel
oordinate plots, linked views, brushing, preference shading, and
areto frontier display. In particular, we define three user-guided
amplers that enable designers to explore (1) the entire design
pace, (2) near a point of interest, or (3) within a region of high
reference. We illustrate these three samplers with a vehicle con-
guration model that evaluates the technical feasibility of new
ehicle concepts. Future research is also discussed.
DOI: 10.1115/1.3243633�

eywords: multidimensional data visualization, trade space
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Introduction
With recent advances in computing power and speed, designers

an now analyze thousands, if not millions, of design alternatives
ore cheaply and quickly than ever before using simulation or
etamodels �1,2�. These advancements provide new opportunities

o revolutionize trade space exploration, particularly for the de-
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sign of complex systems �e.g., automobiles, aircraft, and satel-
lites� that consist of multiple, interacting subsystems and compo-
nents that are designed by engineers from a variety of disciplines.
The main challenge when designing such systems lies in resolving
the inherent tradeoffs that exist both within and between sub-
systems and the overall system. For example, an aircraft is com-
posed of the wings, fuselage, engines, and countless other sub-
systems and components. If we consider the design of the wings,
tradeoffs exist between aerodynamics, structures, and controls
among others, yet wing designers are also driven by the goal to
reduce the weight of the wing to minimize the overall weight of
the aircraft.

Design optimization is frequently used to help resolve these
tradeoffs; however, it still has many shortcomings and challenges
to overcome despite recent advances �3�. Balling �4� has noted
that the traditional optimization-based design process of “�1� for-
mulate the design problem, �2� obtain/develop analysis models,
and �3� execute an optimization algorithm,” often leaves designers
unsatisfied with their results because the problem is usually im-
properly formulated: “the objectives and constraints used in opti-
mization were not what the owners and stakeholders really
wanted…in many cases, people don’t know what they really want
until they see some designs.” Similar findings have occurred in
other fields �5,6�.

There is an emerging paradigm of design exploration whereby
designers “shop” for the best solution using visualization tools
instead of relying solely on optimization. This design by shopping
process—introduced by Balling �4�—allows designers to explore
the design space first, and then choose an optimal solution from a
set of possible designs after “forming realistic expectations of
what is possible.” The basic steps to such an approach are shown
in Fig. 1. First, a simulation model M is created to analyze the
system being designed. In many cases, this model is a “black
box,” where the relationships between design inputs X and perfor-
mance outputs Y are not known, and where X and Y combine to
form what we call the trade space Z= �X]Y�T. Experiments are
then run to simulate thousands of design alternatives by varying
X, and storing the corresponding values of Y for each alternative.
Interactive visualization tools are then used to explore the trade
space to find the most-preferred point Z�.

1.1 Review of Related Work. Early work in engineering de-
sign sought to support this type of approach concentrated on vir-
tual reality to visualize design alternatives. Spherical mechanism
design, for instance, significantly benefited from virtual reality
�7–9�, as have large-scale manufacturing simulations �10,11�, fluid
mixing simulations �12�, and a variety of other engineering design
problems �13�. Many researchers examined effective interface de-
velopment for virtual environments �12,14–16�, but most of these
virtual environments do not support trade space exploration since
they are typically intended to visualize a single point solution, not
to explore the entire trade space. Cloud visualization �17�, visual
design steering �18,19�, and the U.S. Naval Research Laboratory’s
visual steering methods �20� provide some exceptions to this.
Messac and Chen �21� proposed an interactive visualization
method, where the progress of the optimization is visualized—but
not steered—throughout the design process, not just at the begin-
ning and end. Likewise, visual design steering and graph mor-
phing �18,19� allow users to stop and redirect the optimization
process to improve the solution; however, their visualization ca-
pabilities are currently limited to 2D and 3D representations of
constraints and objectives. Recent work has investigated visual-
ization of n-dimensional Pareto frontiers �22�. Finally, in data
mining and knowledge discovery, existing software applications
that offer multidimensional data visualization capabilities for trade
space exploration include MINER3D, Spotfire’s DECISIONSITE, XMD-

VTOOL, and GGOBI—the capabilities of each are reviewed else-

where �23�.
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1.2 Overview of ARL Trade Space Visualizer. To support
rade space exploration, researchers at the Applied Research
aboratory �ARL� and Penn State have developed the ARL trade
pace visualizer �ATSV� �23,24�, a JAVA-based application that
isplays multidimensional trade spaces using glyph, 1D and 2D
istograms, 2D scatter, scatter matrix, and parallel coordinate
lots, linked views, and brushing—examples are provided in Sec.
. The glyph plot capability has been developed using the Visual-
zation Toolkit �VTK�, an open source application that supports
nteractive 3D plots within a JAVA application �25�. VTK provides
he capability to view plots in 3D stereoscopic mode, which can
hen be used within advanced visualization and virtual environ-

ents as desired �24�. The ATSV is developed entirely in JAVA,
aking it cross-platform compatible unlike many commercially

vailable software packages.
In addition to offering these capabilities to visualize multidi-
ensional data, ATSV provides data analysis tools such as brush-

ng �26�, linked views �27�, Pareto frontier display, preference
hading, and data reduction and zooming methods, as shown in
ig. 2, to facilitate trade space exploration. ATSV can import any

ext-based data file or worksheet, where the rows are the indi-
idual design points, the columns are the simulation model’s in-
uts and outputs, and the data is in comma- or tab-delimited for-
at. ATSV can also input trade spaces, where individual designs

re tagged with additional files, and when queried, these files
e.g., a 3D solid model of the system� can be displayed, as seen in
he middle right of Fig. 1.

In addition to reading in static data sets that have been gener-
ted offline, the visual steering commands introduced in Sec. 2
llow users to interactively sample and explore the trade space by
irectly querying the simulation model to generate data on-the-fly.
ection 2 describes how this is achieved, and their use is demon-
trated in Sec. 3, with a vehicle configuration model that evaluates
he technical feasibility of new vehicle concepts. This model is
epresentative of simulation models commonly used in trade stud-
es, allowing us to demonstrate several important aspects of our
oftware and the proposed visual steering commands. Closing re-
arks and future research are discussed in Sec. 4.

Visual Steering Using Samplers
Before proceeding further, we first define the underlying goal in

rade space exploration, as it differs from optimization. We as-
ume the least informative starting point, where the decision mak-
rs have no knowledge of their preference on Z or the relation-
hips in M. As they explore the trade space, they will
imultaneously form their preference while searching for the
ost-preferred point in the trade space. We further assume that

here exists a utopia point Z� that the decision makers would
hoose from Z if they had unlimited ability to explore the trade
pace completely. Recognizing the finite computing power avail-

Fig. 1 Typical approach to trade space exploration
ble and the cost of search time, the goal is to have the decision
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maker�s� choose a point Z+ as close as possible to Z�, while mini-
mizing the time to arrive at the choice of Z+. This differs from
optimization in that the decision makers’ preference is not known
a priori, or may change as a result of information gained during
the exploration process, sending the search in an entirely different
direction.

With this in mind, we are developing visual steering commands
that help decision makers form their preference while exploring
the trade space �i.e., “shopping”� to focus in on regions/points of
interest as their preference sharpens. In this paper, visual steering
commands are embodied in three user-guided samplers that are
created to sample �1� the entire design space, �2� near a point of
interest, or �3� within a region of high preference. As echoed in
the reinforcement learning literature �28�, we have noticed a basic
dichotomy when using visual steering commands: �i� those that
explore the trade space by broadly searching it, and �ii� those that
exploit knowledge gained during trade space exploration, to guide
and narrow the search. Initially, users start out by conducting a
broad search, then begin exploring localized regions of the trade
space to increase knowledge of the underlying relationships, fi-
nally focusing their search in a region potentially containing Z�.
When viewed in this light, the first sampler supports exploration

Fig. 2 Examples of data analysis tools in ATSV: „a… linked
views that display the same brush settings; „b… Pareto frontier
display „�… and preference shading; „c… using brushing to
zoom in within the trade space
of the entire trade space �case �i��, while the second two exploit
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nowledge about points or regions of interest to guide the sam-
ling process �case �ii��. These three samplers can be used to-
ether in any combination to alternate between exploring the trade
pace and exploiting useful information that is obtained during
his exploration process. Descriptions of each follow.

�1� Design space sampler. The design space sampler randomly
samples over the multidimensional hypercube of X, which
is defined by the upper and lower bounds on each input
variable. These bounds can be reduced using the brushes in
the ATSV to “zoom in” on regions of interest as additional
information becomes available. The sampler performs a
Monte Carlo simulation on the inputs of the simulation
model M, where each input may have a uniform, normal, or
triangular distribution. An example is shown in Fig. 3,
where Fig. 3�a� shows 100 samples, randomly distributed,
based on the original bounds �0�A ,B�1�, while Fig. 3�b�
shows the next 100 samples in the reduced region of inter-
est �0�A ,B�0.5�. This sampler is usually the first step in
the exploration process in that it initially populates the
trade space so that users can start to visualize tradeoffs and
trends within the data. While more advanced sampling
strategies can be employed �e.g., Latin hypercubes �29�,
uniform designs �30��, we have found that random sam-
pling is more advantageous when exploring the trade space
visually since any structure that occurs in the sample data is
an artifact of the model M �potentially valuable information
to a decision maker�, rather than being induced by the sam-
pling process �31�.

�2� Attractor sampler. The attractor sampler—or attractor for
short—populates new samples near a user-defined point
within the trade space. The attractor is specified in the
ATSV interface with a graphical icon —�� that and is fre-
quently used to try to fill “gaps” in the n-dimensional trade
space. Since the user-specified point in the trade space Z
can consist of any combination of the inputs X and the
outputs Y, and can consist of discrete and continuous vari-
ables, we use an evolutionary algorithm, specifically Dif-
ferential Evolution �DE� �32�, to guide the sampling pro-
cess. The fitness of each new sample point Zi_sample is based
on
the normalized Euclidean distance from the specified
n-dimensional point �i.e., the attractor� Zi_attractor

Fitness =��
n �Zi_sample − Zi_attractor

Zi_attractor
	2

�2�

Fig. 3 Design space sampler examples: „a… 100 sam
i=1
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The user can specify the population size and number of genera-
tions before executing the attractor sampler and can stop the at-
tractor sampler at any time the user desires. As the population
evolves, the samples get closer and closer to the attractor icon. As
shown in Fig. 4, the attractor is placed in the 2D trade space �see
Fig. 4�a��, and additional samples are slowly added near the at-
tractor �see Fig. 4�b��. The default settings for crossover constant
�1.0�, mutation constant �0.5�, and the Best1Bin selection strategy
are used within the DE algorithm, and ongoing studies on a vari-
ety of test problems—varying in dimensionality, size, nonlinear-
ity, complexity, etc.—are currently being performed to tune DE
for use in ATSV. For higher dimensional trade spaces, parallel
coordinates is most effective for locating attractors, as demon-
strated in Sec. 3. Finally, we note that we do not discard any
points in the early generations, even though many are far away
from the user-specified point; likewise, we retain points that may
become infeasible after applying constraints via brushes. This is in
line with the concept that users are simultaneously forming their
preference while searching the trade space. The imposition of ad-
ditional constraints �e.g., maximum weight of satellite due to
launch vehicle restriction, maximum beam of a ship� could elimi-
nate all points near an attractor, leaving the trade space unpopu-
lated if all points were not maintained and stored.

�3� Preference-based sampler. The third sampler is a
preference-based sampler that populates the trade space in regions
that perform well with respect to a user-defined preference func-
tion. New sample points are generated using the DE algorithm,
but the fitness of each sample point is defined by the user’s pref-
erence structure, expressed currently as a linear weighting over Z
�23�

Fitness = �
j=1

npref

wjZj �3�

where npref is the number of trade space variables Zj to which the
user has assigned a preference weight wj. As shown earlier in Fig.
2�b�, ATSV already supports the ability to display preference
structures, and this preference structure is retrieved directly from
ATSV, and used in the evolutionary algorithm.

An example of the preference-based sampler is shown in Fig. 5.
Starting with 100 sample points �see Fig. 5�a��, the preference-
based sampler is executed for seven generations using a popula-

s in A, B«†0,1‡; „b… 100 new samples in A, B«†0,0.5‡
ple
tion size of 25 to obtain the results shown in Fig. 5�b�. Note the
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oncentration of points increases in the direction of preference,
amely, the upper right hand corner of the plot, which has been
pecified using the brush controls �see Fig. 5�b�� to maximize both
bjectives with equal weighting. As with the point sampler, we are
urrently performing studies to finetune the underlying algorithm,
ased on the overall problem size and its complexity, as well as
he number of trade space variables on which the user has speci-
ed a preference.
Implementation of these three samplers occurs through an ex-

loration engine that mediates between ATSV and the simulation
odel M, as shown in Fig. 6. The exploration engine is written in

AVA and is a subpackage to ATSV. To interface with this explo-
ation engine, ATSV was modified to:

Fig. 4 Generating new samples near a point of interest with
move toward attractor

Fig. 5 Preference-based sampler example: „a… original 100 s

direction of preference; „c… brush settings indicating preferenc

44501-4 / Vol. 9, DECEMBER 2009
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• add user controls �e.g., —�� � to specify the samplers in ATSV,
• create objects that embody these steering commands, which

are passed from ATSV to the exploration engine, and
• allow for continuous display of new points as the explora-

tion engine generates them.

The exploration engine can interface with simulation models
coded in JAVA, C, C��, etc. that are executable in “batch mode,” as
well as simulation models developed in Excel or MATLAB.

While the implementation of the exploration engine and sam-
plers has been described within the context of ATSV, they are
readily applicable to any visualization software that supports trade
space exploration. An example application follows.

attractor: „a… original 100 sample points; „b… sample points

ple points with preference shading; „b… samples increase in
the
am

e structure
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Vehicle Design Example

3.1 Problem Description. To demonstrate the use of visual
teering commands and the three samplers for trade space explo-
ation, we linked the exploration engine with a simulation model
erived from an existing vehicle configuration model �33,34�. The
odel includes five measures of performance—acceleration, fuel

conomy, and measures of interior accommodation—and 11 high-
evel vehicle design parameters, including ten continuous vari-
bles that define overall exterior dimensions and positions of the
ccupants, and one discrete variable that specifies the vehicle’s
owertrain. We draw a distinction from previous work with this
odel in that we do not restrict ourselves to points located in the

echnical feasibility model �TFM�, i.e., the Pareto frontier gener-
ted from the vehicle configuration model �see Ref. �35� for a
etailed discussion on the TFM�. Instead, we compute a constraint
unction ConVio, which measures the total violation of all con-
traints in the model, such that feasible points have zero constraint
iolation, and infeasible ones have a nonzero value for ConVio.
his enables us to explore a broader range of design points as we
earch for overall trends in the data and underlying simulation.

Table 1 summarizes the problem definition that is used for this
xample. We normalize the bounds on the ten continuous design
ariables to �0,1�, and scale the objectives against the baseline
odel—defined as the point Y = �1,1 ,1 ,1 ,1 ,1� with ConVio
0—to protect the proprietary nature of the data. The design vari-
ble H defines the powertrain and can take one of six options
1–6�. Finally, the preference for each objective is indicated in the

Fig. 6 Exploration engine—system architecture

Table 1 Vehicle problem definition

Model Inputs

ariable Lower bound Upper bound

0 1
0 1
0 1
0 1
0 1
0 1
0 1

1,2,3,4,5, or 6
0 1
0 1
0 1

Model outputs
onVio 0→ feasible �0→ infeasible
ass Baseline=1 Defines weight class
bj1 Baseline=1 Smaller is better
bj2 Baseline=1 Larger is better
bj3 Baseline=1 Larger is better
bj4 Baseline=1 Larger is better
bj5 Baseline=1 Larger is better
ournal of Computing and Information Science in Enginee
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table, and we only want Obj1 to be smaller than the baseline
value—larger is better for the other four objectives. While stating
these very general preferences beforehand may seem counterintui-
tive to trade space exploration �i.e., if the direction of preference
is known for each objective, then why not just use a multiobjec-
tive genetic algorithm to find the best design?�, the end goal is to
determine the best point Z+ in the trade space, and to do this, we
would need, for example, to specify weights for each objective if
we were to use a weighted-sum method to find the best point. The
problem arises in that we have no idea what weights to specify for
each objective at this stage of the design process—and any
weights that we did specify would invariably led to a design that,
in all likelihood, was not what we intended to design �see the
discussions in Refs. �3,36��. We could use a multiobjective genetic
algorithm to determine the Pareto frontier, as was done in earlier
work �35�; however, that gives us a set of nondominated designs,
not a single point, and this is where trade space exploration can
help by allowing designers to shop for the best design. An ex-
ample of such shopping process follows.

3.2 Visual Steering to Design a New Vehicle. Following the
scenario described in Ref. �35�, we begin with 78 different vehicle
configurations and the goal of finding a new configuration that
improves on all objectives simultaneously compared with the
baseline model, if possible. After learning how to use ATSV, the
visual steering commands, and the three samplers, the vehicle
integration engineer �VIE� starts by looking at a histogram of the
initial 78 points �see Fig. 7�a�� to see how well they cover the
design space X= 
A ,B , . . . ,K�. The VIE determines that regions of
several design variables �e.g., the middle half of A and E, the
upper 3/4 of C, all but the highest values of G, etc.� are under-
sampled. The bounds over which A-K are sampled are adjusted,
and 22 new sample points are generated using the design space
sampler to yield a total of 100 points. The updated histogram in
Fig. 7�b� shows how the sampler has added new points in these
specific ranges. Upon looking at this figure, the VIE decides that
these 100 sample points are sufficient to start exploring the trade
space.

Next, the VIE plots a scatter matrix of the 100 points, which is
shown in the Appendix, and finds five interesting trends in the plot
as follows.

1. Obs. No. 1: As A increases, Mass increases, and as Mass
increases, Obj1 increases within each of the discrete levels
that appear. These discrete levels appear to correlate with H,
the variable related to powertrain selection, and the levels of
H also correlate with Obj2, leading to an interesting relation-
ship between Obj1 and Obj2.

2. Obs. No. 2: Low and high values of A tend to violate the
constraints �i.e., high values of ConVio� much more than the
middle of the range.

3. Obs. No. 3: B is positively correlated with Obj5.
4. Obs. No. 4: J is positively correlated with Obj3.
5. Obs. No. 5: K is positively correlated with Obj4.

Based on these observations, the VIE realizes that B, J, and K
can be used to improve Obj5, Obj3, and Obj4, respectively; so, a
2D scatter plot of Obj1 versus Obj2 is created to investigate this
relationship further �see Fig. 8�a��. The VIE also assigns color to
ConVio in this 2D plot to ascertain the level of feasibility of these
points, which has largely been ignored until now. Given the pref-
erence for low values of Obj1 and high values of Obj2, the VIE
places the —�� Attractor_1 in the upper left corner of the plot, and
executes the attractor sampler for six generations with a popula-
tion size of 25, using the default settings for crossover, mutation,
and selection mentioned in Sec. 2. Figure 8�b� shows the updated
plot with these new samples.

The VIE is pleased to see more points clustered near the attrac-
tor, as well as the higher concentration of feasible points �in dark

blue�, but is now starting to thinking about maximizing Obj3–
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bj5. The VIE places a second attractor in the upper regions of
bj3, Obj4, and Obj5, using a parallel coordinates plot, which

asily allows attractors to be placed in more than two dimensions.
his second attractor is used to execute a second attractor sampler

hat runs for six generations, each having a population size of 25,
nd the results are shown in Fig. 9. The plot is color coded based
n ConVio, and the VIE quickly notes the “bands” of feasible
dark blue� points that appear after running the second attractor.
nfortunately, the band originating in the middle of Obj1 and the
ands in the lower and middle regions of Obj2 are not helpful,
iven the preference to minimize Obj1 and maximize Obj2. We
ote that the dashed oval has been added to highlight the location
f —�� Attractor_2, and the location of —�� Attractor_1 is also shown.
To gain better insight into the nature of these bands of solu-

ions, the VIE uses a glyph plot to visualize all five objectives at
nce, in a more familiar 3D representation. In doing so, the VIE
akes advantage of the strong correlation between Obj3 and Obj5
seen in Fig. 9 and the Appendix�, plots Obj1, Obj2, and Obj3 on
he x, y, and z axes, and assigns Obj4 to size where larger is better.
onVio is assigned to transparency—infeasible points are more

ransparent—and the VIE specifies his preference on each objec-
ive using the brush/preference controls so that color in the result-

Fig. 7 Use of design space sampler to achieve more uni
configurations; „b… histograms updated with 22 new sample

Fig. 8 2D scatter plot of Obj1 versus Obj2: „a… placement o

using point sampler

44501-6 / Vol. 9, DECEMBER 2009
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ing glyph plot indicates preference �see Fig. 10�a��.
The VIE is still worried that many points appear to be infeasible

�i.e., are highly transparent in Fig. 10�a��, and a preference-based
sampler is executed to try to obtain more feasible points in the
region of high preference �red points as indicated by the color
scale�. This sampler is executed to generate another 150 points
�six generations each with a population of 25�, and the resulting
plot that includes these new samples is shown in Fig. 10�b�. The
VIE is pleased to see a higher percentage of feasible points and
several more points in the preferred region.

The final step in the VIE’s shopping process is to use the brush
controls to screen out points that are worse than the baseline de-
sign. It turns out that there are no feasible points where all of the
objectives are improved as desired, and the VIE must make a
tradeoff between which objectives to improve and which to com-
promise. The VIE learns from brushing the data that it is relatively
easy to improve Obj3, Obj4, and Obj5 �by increasing the values
for B, J, and K as noted earlier�, and that the real tradeoff occurs
between Obj1 and Obj2. Using the brush control settings shown in
Fig. 11�a�, the VIE reduces the points to the few shown in Fig.
11�b�, from which a promising option is selected: This design
sacrifices only 2% in Obj1 and Obj2 for a gain of 3%, 9%, and

sample distributions: „a… histogram of 78 initial vehicle

Attractor_1 in 2–D scatter plot; „b… updated scatter plot after
form
s

f —��
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3% in Obj3, Obj4, and Obj5, respectively. When creating this
nal glyph, the VIE added isosurfaces to the plot to indicate dif-
erent weight classes based on the vehicle mass, and observed that
he final options fell within one of three weight classes. This in-
ormation will be useful as different configurations and powertrain

Fig. 9 Parallel coordinates plot showing

Fig. 10 Plot of Obj1–Obj3 with Obj4=size, ConVio=transpa

designs; „b… glyph plot after preference-based sampling

ournal of Computing and Information Science in Enginee
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options are considered during detail design.
In reality, the shopping example could have proceeded in nu-

merous ways using countless different plots and charts. Experi-
enced users might prefer to brush the data against the baseline
vehicle, and start shopping from there, whereas novice users

j1–Obj5 and ConVio „with ConVio=color…

cy, and Preference shading=color: „a… glyph plot of current
Ob
ren
ring DECEMBER 2009, Vol. 9 / 044501-7
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ight want to gain insight into the model during the shopping
rocess while also locating the best design. The story, as we have
old it, is representative of what we have observed at this particu-
ar company for this particular problem; however, we have clearly
rticulated each step to demonstrate the visual steering com-
ands, in general, and the three samplers, in particular. Future
ork will investigate any common processes or search strategies,

s outlined in the Sec. 4.

Closing Remarks and Future Work
In this paper, we have discussed the need for trade space ex-

loration, and introduced a set of visual steering commands to
upport the process. To enable these commands, we have defined
nd implemented three user-guided samplers that enable designers
o explore �1� the entire design space, �2� near a point of interest
sing an attractor, or �3� within a region of high preference, as
pecified by the user. Finally, we demonstrated these visual steer-
ng commands to guide the trade space exploration process using
vehicle configuration model. Within this context, we highlighted

he features and capabilities of our powerful new data visualiza-
ion tool, ATSV, which offers multidimensional viewing capabili-
ies, including any combination of glyph, 1D and 2D histograms,
D scatter, scatter matrix, and parallel coordinate plots, linked
iews, brushing, preference shading, and Pareto frontier display.

ig. 11 Selection of final vehicle design point: „a… brush/
reference controls for making final selection; „b… resulting
lyph plot including mass contours
In addition to the ongoing work discussed in this paper, there
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are a variety of promising avenues for future research. For in-
stance, the three samplers presented in this paper represent our
initial attempts at creating visual steering commands to guide
trade space exploration. We envision a variety of additional sam-
plers such as a Pareto sampler, most informative sampler, most
uncertain sampler, etc., which support different aspects of the
shopping process. We also envision a “repeller” that works in the
exact opposite way as the attractor does, i.e., generates points that
are NOT like the user-specified point. We have already encoun-
tered several applications working with companies where this type
of sampler would be useful. We are also in the process of inter-
viewing designers, engineers, and practitioners to learn more
about how they use visualization to support decision making and
the capabilities that they wished they had for trade space explora-
tion. One example is the capability to visualize the corresponding
physical geometry for any selected point in the trade space, and
we are investigating ways to link and render 3D parametric mod-
els within ATSV to support this.

Two underlying assumptions when using visual steering com-
mands are that �i� a simulation model M is available to query, and
�ii� the analyses are not computationally expensive, and can be
executed in real-time, or sufficiently quickly, as the case may be.
For case �i�, the ATSV was initially designed to work with static
data sets, and can incorporate empirical data, as long as it is in
tabular format. If an underlying model does not exist, then regres-
sion techniques could be used to create response surfaces �37�, for
instance, based on the empirical data, which could then be ex-
plored within ATSV. Likewise, for case �ii�, a variety of metamod-
eling techniques exist that can be used to construct inexpensive
surrogates of any computationally expensive analyses �37�, and
these could be queried directly by the exploration engine when
executing any of these samplers since it is the runtime of the
simulation model that constrains their use. The visual steering
commands could then be used to infer regions of interest, which
can drive toward regions in the trade space, wherein the compu-
tationally expensive analyses are executed next. We have found
that the simplified models typically used for trade studies such as
demonstrated here are not computationally expensive, and lend
themselves well to be used in conjunction with the proposed vi-
sual steering commands.

Finally, there is the issue of training users in how to use �a�
ATSV and �b� the visual steering commands and samplers. Given
the variety of data visualization capabilities within ATSV, users
can quickly become overloaded, especially when considering high
dimensional trade spaces. We plan to begin developing videos and
training protocols to improve proficiency with ATSV, and instruct
users on how to best utilize its capabilities and visual steering
commands. Meanwhile, we have observed on several occasions
that users already familiar with ATSV can quickly learn how to
utilize the visual steering commands and samplers in the ATSV
interface, which demonstrates to us that they are fairly intuitive to
use.
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