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Engineering design problems often contain correlations and tradeoffs that may or may not 
be obvious or well-understood.  As design problem complexity increases, decision 
makers find it more and more difficult to grasp these tradeoffs effectively.  The rapid 
growth of computing power now allows the simulation of millions of design alternatives, 
and the ability to effectively visualize these alternatives and understand the tradeoffs 
associated with them has never been more important.  Trade space visualization tools are 
designed to aid decision makers by allowing them to effectively explore a design space 
and grasp the underlying tradeoffs and nuances particular to their specific problem.  
These tools provide great potential in evaluating complex dynamical systems in the 
aerospace industry, among others.  In this paper, we apply our trade space visualization 
software, the Applied Research Lab Trade Space Visualizer (ATSV), to search for 
optimal constant acceleration orbit transfers.  This problem is formulated as a 
multiobjective optimization problem where it is desirable to explore various competing 
objectives.  We identify a known optimal solution and explore the input space to search 
for other optimal or near-optimal trajectories.  Significantly perturbing the known 
solution to an example problem has demonstrated that the optimal solution can be 
converged upon successfully. 
 

INTRODUCTION 

Complex design can be considered a decision-making process, where a classical 

approach to the optimal decision process can be described by [1]: 

• Identify options 

                                                 
* Graduate Research Assistant, Department of Aerospace Engineering, The Pennsylvania State University, 
229 Hammond Bldg., University Park, PA 16802 USA 
† Associate Professor, Department of Aerospace Engineering, The Pennsylvania State University, 229 
Hammond Bldg., University Park, PA 16802 USA; Senior Member, AAS; Associate Fellow, AIAA. 
‡ Professor of Mechanical and Industrial Engineering, 314D Leonhard Building, The Pennsylvania State 
University, University Park, PA 16802 USA; Associate Fellow, AIAA. 
§ Head, Product and Process Division, Applied Research Laboratory, State College, PA 16804 USA 
**  Research Assistant, Applied Research Laboratory, State College, PA 16804 USA 
 



 2 

• Identify ways to evaluate options 

• Weight each evaluation dimension 

• Do the rating 

• Pick the option with the highest score 

This method, rational choice analyses, is taught in engineering and business curriculums.  

With this approach, rational choices are made after applying game-theoretic or statistical-

theoretic methods to a problem [2].  Within the visualization community, interactive 

optimization-based design methods fall mainly into the category of computational 

steering whereby the user (i.e., designer) interacts with a simulation during the 

optimization process to help “steer” the search process toward what looks like an optimal 

solution.  The steering process allows the designer to gain new perspectives on 

correlations within the problem and use intuition, heuristics, or some other method to 

adjust the design space to move towards solutions that they feel are promising.  On the 

importance of visualization in engineering optimization, Messac and Chen [3] noted: “If 

effectively exploited, visualizing the optimization process in real time can greatly 

increase the effectiveness of practical engineering optimization.”  Furthermore, Ng [4] 

advocates the use of data visualization and interaction to support the designer in making 

informed decisions and tradeoffs during multiobjective optimization.  Many others argue 

that visualization should be considered a solution tool and that “human-in-the-loop” 

optimization has significant advantages over black-box search algorithms [5]-[6].   
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The Applied Research Lab Trade Space Visualizer (ATSV)* used in this research has 

been developed to support the exploration phase of the design process by offering the 

following functionality [7]:  

1. Visualize complex datasets using multi-dimensional visualization techniques 

2. Assign variables to glyph, histogram, and parallel coordinates plots 

3. Specify upper and lower bounds of an n-dimensional design space 

4. Implement dynamic brushing within glyph, parallel coordinates, and histogram plots 

to uncover relationships in the dataset (linked views) 

5. Visualize different regions of interest, using preference shading and corresponding 

Pareto frontier identification 

6. Implement visual steering commands to navigate multi-attribute trade spaces via 

various Attractor/Pareto Samplers 

7. Create multiple views of glyph, histogram, and parallel coordinates plots of the same 

trade space 

8. Select a design from the glyph plot to display quantitative information, 3D 

geometries, and other files such as images and documents 

9. Use advanced visualization hardware to view graphs and 3D geometries in stereo 

mode 

This software has been implemented for the optimization of various multi-objective 

problems including orbital mechanics applications, although all functions are not used.  

The ATSV’s exploration capabilities have been previously applied to a simple impulsive 
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orbit transfer to test its effectiveness on a simple dynamic problem with a known optimal 

solution [8].  In this work we apply the exploration and visual steering capabilities of our 

software to the more complex problem formulation of continuous-thrust orbital transfers. 

ATSV BACKGROUND 

The ATSV can explore design spaces statically or dynamically.  Static data sets are 

text or spreadsheet files generated from an external model in which decision variables 

and objective function values for each solution are organized.  Dynamic datasets more 

fully utilize the potential of the ATSV by integrating visual steering into the exploration 

process [9].  Visual steering can be defined as the process of observing a global search 

and making adjustments to it in real time as the designer sees fit [6].  It allows the 

designer to simultaneously explore the trade space and exploit new information and 

insights as they are gained.   

Currently, the ATSV has the ability to specify five types of visual steering commands 

to generate new data by random sampling, manual sampling, attractor-based sampling, 

preference-based sampling, and Pareto sampling.  More details on these sampling 

methods are discussed in Reference [6].  The ATSV’s attractor based sampling creates 

points in the objective space close to a desired location, specified by an “attractor”. 

A Pareto-modified evolutionary algorithm, specifically Differential Evolution [10], is 

used to guide the sampling process for the attractor, Pareto, and preference samplers in 

order to generate points in the objective space from n-dimensional discrete and 

continuous inputs.  Details on the implementation of Pareto-modified Differential 

Evolution and the visual steering commands within ATSV can be found in Ref. [9].   
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The ability of the user to “guide” an evolution process is a recently developed addition 

to the Pareto sampler.  Guided Pareto Sampling allows the user to choose solutions they 

wish to start or continue an evolution process.  This gives the decision maker the 

advantage of influencing an evolution as it progresses with his/her intuition or knowledge 

gained from current and/or previous visualizations and evolution processes.  Guided 

Pareto Sampling with an example of its application is discussed further in the Results and 

Discussion section. 

LOW -THRUST ORBITAL MANEUVERS 

A spacecraft in orbit can be defined by a set of six orbital elements which describe its 

orientation in space.  The classical orbital elements (semi-major axis a, eccentricity e, 

inclination i, right ascension of the ascending node Ω, argument of periapsis ω, and true 

anomaly θ) describe the size (a) and shape (e) as well as the orientation (i, Ω, ω) of the 

orbit.  The sixth element (θ) describes the angular position of the spacecraft on the 

particular orbit described by the previous five elements.   

In order to avoid the singularities associated with the classical orbital elements for 

circular and/or non-inclined orbits, equinoctial orbital elements (a, h, k, p, q, L) are used 

in the derivation of the equations of motion [11].  The simple transformation, shown in 

Eq. 1, eliminates all singularities except for the retrograde orbit with i = 180°. 
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Edelbaum et al., [12] using the calculus of variations, developed the equations of 

motion describing how a spacecraft’s equinoctial orbital elements change with time due 

to an applied thrust.  A set of these equations, modified by Kechichian [13], are shown as 
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The matrix [M] is a 6×3 matrix containing expressions involving partial derivatives of 

each state element in 
r

ex ; further information regarding the definition of [M] can be found 

in Refs. [13]-[14].  The vector u
v

 is a unit vector pointing in the thrust direction, 
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The angles α and β are yaw (in plane) and pitch (out-of-plane) angles respectively, and ft 

is the constant applied acceleration.  There are no coasting arcs, meaning ft is constant 

and positive for all time t.  The mean motion n is given by n = (µ /a3)1/2 where µ is the 

gravitational parameter.  The scalar Hamiltonian for this system is defined as 

 [ ]λ λ= +
v v vT

t L LH M uf e  (6) 

where the end condition, H = 1.0, corresponds to the minimum-time minimum-fuel 

transfer.   

In this paper, constant acceleration transfers are explored.  The equinoctial state ex
v

and 

the adjoint variable state λ
v

 are modified to include spacecraft mass m and an associated 

Lagrange multiplier λm respectively.  The formerly constant applied acceleration ft is 

replaced with the definition 

 =tf T / m (7) 

where T is the constant applied thrust and m is the instantaneous spacecraft mass. 

Previous Work 

Some of the earliest to explore optimizing low-thrust trajectories using the variation of 

parameter equations to model orbital perturbations with equinoctial elements as well as 
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adjoint variables were presented by Edelbaum et al [12].  Due to the limited computing 

power at that time, averaging of the state and adjoint equations of motion was employed 

to allow reasonable computation time.  Kechichian explored a similar problem using 

precision-integration of the equations of motion and compared the results to Edelbaum’s 

averaging technique; the accuracy differences between the two techniques were 

significant [13].  In his work, the initial adjoint variables were optimized using an 

iterative scheme based on a general descent method, where the aim was to optimize an 

objective function consisting of a weighted sum of the differences between the actual and 

desired final orbit properties.  The result was an optimized set of initial adjoint variables 

that correspond to the control angle time histories which creates the minimum-time 

minimum-fuel trajectory (assumes no coast arcs) from LEO to GEO for ft = 9.8×10-5 

km/s2, as shown in Table 1. 

Table 1: Optimal Initial Adjoint Variables for LEO to GEO Transfer Found by 
Kechichian [13] 

Adjoint Variable Initial Value 
λa,o 1.260484756 sec/km 
λh,o 386.5626962 sec 
λk,o -9388.262635 sec 
λp,o -2277.132367 sec 
λq,o -17430.27218 sec 
λL,o 515.5487187 sec/rad 
H 1.002694 

TOF 58624.094 s 

More recently, the problem has been revisited by Igarashi [14] in the attempt to search 

specific bounds (±5%, ±10%, ±20%) on the set of known optimal initial adjoint variables 

using a variety of evolutionary algorithms.  The results found in Igarashi’s work closely 

matched those found by Kechichian. 
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Here, we revisit this problem once again using an evolutionary algorithm, specifically 

Differential Evolution, which has been integrated into ATSV.  The bounds on the known 

optimal initial adjoint variables will be extended beyond what was explored by Igarashi 

in the attempt to find other optimal or near-optimal solutions.  Qualitative observations 

are made on the effectiveness of the integration of the user/designer into the real-time 

visualization and multi-objective optimization elements of ATSV. 

Problem Specification 

The orbit transfer between the low-Earth orbit specified in Table 2 (a) and the 

geosynchronous orbit specified Table 2 (b) is the transfer of interest for this work – 

identical to the transfer explored in Refs. [13]-[14].   

Table 2:  (a) Initial LEO “Baseline” Orbit Characte ristics and (b) Final GEO Orbit 

Characteristics 

(a)  Initial Low-Earth Orbit   (b) Final Desired Orbit 
ao  7000 (km)   adesired  42000 (km) 

eo 0   edesired 0.001 

io  28.5°   idesired  1° 

Ωo 0°   Ωdesired 0° 

ωo 0°   ωdesired 0° 

θo -220°  θdesired Free 

For the constant acceleration problem described in the previous section, the initial 

conditions of the equinoctial state 
v

e,ox  are known but the initial conditions of the adjoint 

variables λ
v

o  are unknown.  Therefore, the decision space consists of the initial conditions 

of these six adjoint variables.  Given λ
r

o  and ft (ft = 9.8×10-5 km/s2), Eqs. (2) and (3) are 

simultaneously integrated using the ODE45 function in MATLAB.  At the termination of 
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integration, the states of interest are the final equinoctial state e,fx
v

and the Hamiltonian H 

of the system. 

The objectives are to achieve the desired final orbit 
r

e,desiredx  and minimize time of 

flight via the transversality condition H = 1.0.  This “target oriented” objective is 

transformed into a “goal oriented” objective by considering the minimization of a 

weighted sum of absolute differences between the final state and the desired final state, as 

shown in Eq. (8).  The two objectives can only be lumped together in a cost function 

because the problem formulation ensures that they do not compete.  Reaching the final 

desired orbit is a fundamental objective, but the minimization of time of flight is an 

objective with a preference.  Since trajectories that do not reach GEO are not viable, the 

minimization of time of flight cannot compete with it.  Note that the weights and the 

order of magnitude of the terms comprising f can significantly affect the ability of a 

search algorithm to properly converge to an optimal solution.   

 f = w1 |a-adesired|+ w2 |h-hdesired|+ w3 |k-kdesired|+ w4 |p-pdesired|+ w5 |q-qdesired|+ w6 |H-1.0| (8) 

The information in Table 3 summarizes the search specifics and cases explored in the 

Results and Discussion section.  An explanation of how we bypass this issue using visual 

steering is covered in the next section. 

Table 3: Summary of Explored Cases 

Constant Acceleration 
Search Range: Objective: 

±10% of Table 1 
±25% of Table 1 
±50% of Table 1 
±500% of Table 1 

 

Explore decision space immediately surrounding 
known optimal solution listed in Table 1 over a 
wider spectrum than Reference [14] and identify 
other optimal or near optimal solutions, if any, 
within each search range. 
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RESULTS AND DISCUSSION 

Optimal Solution Acquisition via Visual Steering 

One of the many goals of the ATSV is to use an engineer’s intuition and/or knowledge 

gained from prior experience with a particular engineering problem in order to enhance 

search.  As with any model implementation using the ATSV, over the many hours of 

sampling the design space, the most productive visual steering commands were 

constantly refined as problem-specific wisdom was gained.  The most effective technique 

found for this problem formulation can be described by the flow chart in Fig. 1. 

 

Fig. 1: Optimal Solution Acquisition via Visual Steering Flow Chart 

First, the decision space is sampled randomly and uniformly anywhere from 100,000 

to 1,000,000 times.  The objective and decision spaces are then visualized in a variety of 

combinations using the ATSV’s Scatter Plots.  The visualization of f vs. TOF, λa,o, λh,o, 

1. Randomly Sample 
Decision Space 

2. Visualize Objective 
Space(s) 

3. Select Solutions of 
Interest 

4. Evolve Using 
Guided Pareto Sampler 
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λk,o, |a-adesired|, |h-hdesired| etc. reveals promising solutions that exist from the randomly 

sampled set.  Solutions of interest are then selected and the exploration of the design 

space is driven by the Guided Pareto Sampler. 

The selection of “solutions of interest” is a problem-specific and designer-specific 

process that can be difficult to quantify because it relies on abstract information such as a 

designer’s intuition, knowledge, and/or problem-specific wisdom.  Generally, solutions 

which have small f are chosen to guide evolutions in early iterations of the exploration 

process.  The selection of solutions used to “guide” evolutions away from 

preconvergence is somewhat more difficult to quantify, but a general guideline of the 

process used for this work is as follows. 

Because of the size of the decision space, evolutions often converge to false optima, 

meaning the progress of solution evolution will halt with f >> 0.  Pre-convergence issues 

may also arise from improper weighting of the terms comprising the definition of f.  If 

this occurs, some or all of the steps listed in Fig. 1 are revisited until f approaches zero or 

it is determined, by user insight, that no solution can be found within the given decision 

space range and the process is terminated.  In order to overcome pre-convergence, a 

diverse selection of points is chosen to guide the evolution.  Generally, we choose a 

variety of promising solutions by examining which terms in f are lagging in the evolution 

process.  An example of promising solution selection using this technique is illustrated in 

the three scatter plots shown in Fig. 2.  In this example, |h-hdesired|, |k-kdesired|, and |p-pdesired| 

are “lagging” after an evolution has pre-converged, meaning their magnitudes are much 

greater than the other terms comprising f.  As shown, we select points which 

simultaneously minimize f and these lagging terms to guide the next evolution.  This 
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technique of guiding the search with lagging terms is simplified for the purposes of 

demonstration in Fig. 2.  The solutions comprising a single guided generation often 

include the best known solution, lagging term solutions, as well as a healthy set (about 

50%) of random solutions within a full or narrowed spectrum decision space.  By visually 

steering the trade space with the ATSV, we can effectively locate optimal solutions 

without tediously fine-tuning the weights on specific objectives. 

 
Fig. 2: Example Selection of Solutions of Interest used to Guide the Next Evolution 

The Guided Pareto Sampler’s ability to pause, adjust, and alter an evolution can 

drastically increase the effectiveness of evolutionary search.  Fig. 3 (a)-(f) shows the 

progression of many Guided Pareto searches toward optimality over many iterations of 

the technique described by Fig. 1.  Each plot shows f vs. time of flight, and the solutions 

chosen to guide a particular evolution are highlighted by black circles.  Using this 

method, the progression toward false optima, where f’s approach towards zero is halted, 

as shown in Fig. 3 (b) and (d), is easily overcome.  With a combination of visualization, 

evolutionary search, and intuition/knowledge inspired adjustments, we are able to 

visually “steer” solutions toward optimality in order to obtain minimum-time, minimum-
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fuel, constant acceleration, or constant thrust orbit transfers (note that minimum-time and 

minimum-fuel transfers are the same if there are no coast arcs allowed).  

 

Fig. 3: Progression of a Typical Search Using the Guided Pareto Sampler 

In order to quantify the point at which the minimization of f is sufficient for 

optimality, the final state of the solution explored in the next section (listed in Table 5) is 

shown in Table 4.  In general, solutions which have f on the order of an arbitrarily chosen 

tolerance of 1×10-5 or less are considered optimal, and the values of the final state of the 

classical elements in this table are a good measure of the accuracy of all optimal solutions 

presented in this work. 

 

 

 

 

(a) (b) (c) 

(d) (e) (f) 
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Table 4: Typical Optimal Final Classical State 

 Goal Sufficiently Optimal 
adesired  42000 (km) 42000 (km) 
edesired 0.001 0.000999677 
idesired  1° 0.99999726° 
Ωdesired 0° 9.76092E-05° 
ωdesired 0° 0.010314043° 
θdesired Free Free 

H 1.0 0.999999 

f 0 4.44×10-6 
 

Constant Acceleration 

Within the decision space search ranges of ±10%, ±25%, and ±50% of the known 

optimal solution listed in Table 1, each evolution process converged toward this known 

solution.  For the ±500% search range, some evolutions converged toward the solution 

listed in Table 1 and others converged to a solution which the author considers to be 

clearly distinct. This “near optimal” solution and a comparison with the optimal solution 

found in Reference [13] are shown in Table 5.  Although only two of the six elements of 

λ
v

o  converge to within 1% of the values listed in Table 1, the time of flight for the near 

optimal solution is only 0.007% greater.  Furthermore, the time history of the classical 

orbital elements and the thrust vector control angles are almost identical when compared 

to corresponding time histories for the solution listed in Table 1, as shown in Fig.  and 

Fig. 5.  Moreover, trends of a, i, e, α, and β with time closely match the time history 

behavior from References [13] and [14].   

The assumption that λh,o and λp,o are less sensitive than the other initial adjoint 

variables to the solution quality may be fair, but the idea that these variables are largely 
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insensitive is not.  Upon replacing the value of λh,o for the optimal set listed in Table 5 

with the optimal value from Reference [13], which we will call λh,o
[13], the value of f 

increases by five orders of magnitude.  Similar behavior is evident when applying this 

test for λp,o,  λh,o and λp,o simultaneously, and various randomly chosen values between 

[λp,o λp,o
[13]] and [λh,o λh,o

[13]].   

Table 5: “Near Optimal” Adjoint Variable Initial Co nditions for Constant 

Acceleration LEO to GEO Transfer 

oλ
v

 Optimal Value % Difference from Reference [13] 

λa,o (sec/km) 1.278695 1.445% 
λh,o (sec) 590.5856 52.779% 
λk,o (sec) -9333.9 -0.579% 
λp,o (sec) -3397.12 -49.184% 
λq,o (sec) -17526.5 -0.552% 

λL,o (sec/rad) 503.6537 2.307% 
TOF (sec) 58628.61 0.007% 

 

 

Fig. 4: (a) Semi-Major Axis and (b) Inclination as a Function of Time for Optimal 
Trajectory found within ±500% of Reference [13] 
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Fig. 5: Yaw α and Pitch β as a Function of Time for Optimal Trajectory found 

within ±500% of Reference [13] 

The existence of a near optimal solution is intriguing, and implies that there are 

multiple distinct sets of adjoint variable initial conditions which lead to nearly the same 

behavior of the orbital elements with time.  Accordingly, the concept of “optimality” as 

referred to in this work should be considered near-optimal, and not truly mathematically 

optimal. 

SUMMARY AND CONCLUSIONS 

ATSV is an effective solution visualization and exploration tool for the constant 

acceleration LEO to GEO transfer discussed in this work.  The “human-in-the-loop” 

capabilities provided by the ATSV’s sampling techniques, the Guided Pareto Sampler in 

particular, played an integral role in the efficient acquisition of optimal trajectories.  

Within a ±50% search of a known optimal solution, evolutionary search converged 

toward this solution.  The ±500% search revealed the presence of a clearly distinct near-

optimal set of adjoint variable initial conditions, which result in very similar time 
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histories of the classical orbital elements when compared with a known optimal 

trajectory.   

Any extended work on this topic should consider the search of an even wider spectrum 

of decision variables for the constant acceleration problem formulation.  More sensitivity 

cases might provide further insight into the relationship between the adjoint variable 

initial conditions and the time histories of the classical orbital elements and thrust control 

angles.  The sensitivity of optimal trajectories to perturbations in the final desired orbit 

could be investigated as well.  In the interest of model accuracy and actual applicability, 

the addition of J2 effects to the system dynamics as well as constraints on the final true 

anomaly could be added to the problem formulation.  Since most of these ideas increase 

the difficulty of search, in order to implement these ideas in a reasonable time frame, the 

designer would benefit from the use of distributed and/or cluster computing.  With this in 

mind, the ATSV software development team is currently prototyping a software addition 

to integrate the power of parallel computing with the effectiveness of “human-in-the-

loop” optimization. 
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