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Engineering design problems often contain corretetiand tradeoffs that may or may not
be obvious or well-understood. As design probleamglexity increases, decision
makers find it more and more difficult to grasp dbdradeoffs effectively. The rapid
growth of computing power now allows the simulatafrmillions of design alternatives,
and the ability to effectively visualize these aieives and understand the tradeoffs
associated with them has never been more imporfenatde space visualization tools are
designed to aid decision makers by allowing thereftectively explore a design space
and grasp the underlying tradeoffs and nuancescpkt to their specific problem.
These tools provide great potential in evaluatiognglex dynamical systems in the
aerospace industry, among others. In this paperapply our trade space visualization
software, the Applied Research Lab Trade Spacealimr (ATSV), to search for
optimal constant acceleration orbit transfers. sTiproblem is formulated as a
multiobjective optimization problem where it is dable to explore various competing
objectives. We identify a known optimal solutiomdaexplore the input space to search
for other optimal or near-optimal trajectories. gi8ficantly perturbing the known
solution to an example problem has demonstrated ttle optimal solution can be
converged upon successfully.

INTRODUCTION
Complex design can be considered a decision-magnogess, where a classical

approach to the optimal decision process can baribded by [1]:

* ldentify options
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* |dentify ways to evaluate options
* Weight each evaluation dimension
* Do the rating

» Pick the option with the highest score

This methodrational choice analysess taught in engineering and business curriculums.
With this approach, rational choices are made aip@tying game-theoretic or statistical-
theoretic methods to a problem [2]. Within theualization community, interactive
optimization-based design methods fall mainly inke category of computational
steering whereby the user (i.e., designer) interagith a simulation during the
optimization process to help “steer” the searclcess toward what looks like an optimal
solution. The steering process allows the desigoemain new perspectives on
correlations within the problem and use intuititieuristics, or some other method to
adjust the design space to move towards solutiossthey feel are promising. On the
importance of visualization in engineering optintiaa, Messac and Chen [3] noted: “If
effectively exploited, visualizing the optimizatioprocess in real time can greatly
increase the effectiveness of practical engineeoipigmization.” Furthermore, Ng [4]
advocates the use of data visualization and inferato support the designer in making
informed decisions and tradeoffs during multiobpeebptimization. Many others argue
that visualization should be considered a solutiool and that “human-in-the-loop”

optimization has significant advantages over black-search algorithms [5]-[6].



The Applied Research Lab Trade Space VisualizelST used in this research has
been developed to support the exploration phagbeotdesign process by offering the

following functionality [7]:

1. Visualize complex datasets using multi-dimensiasialization techniques

2. Assign variables to glyph, histogram, and paraardinates plots

3. Specify upper and lower bounds of an n-dimensideaign space

4. Implement dynamic brushing within glyph, paralleloedinates, and histogram plots
to uncover relationships in the dataset (linkedveie

5. Visualize different regions of interest, using prehce shading and corresponding
Pareto frontier identification

6. Implement visual steering commands to navigate irattlibute trade spaces via
various Attractor/Pareto Samplers

7. Create multiple views of glyph, histogram, and pat@&oordinates plots of the same
trade space

8. Select a design from the glyph plot to display diative information, 3D
geometries, and other files such as images andets

9. Use advanced visualization hardware to view gragid 3D geometries in stereo

mode

This software has been implemented for the optitiaaof various multi-objective
problems including orbital mechanics applicatioal$hough all functions are not used.

The ATSV’s exploration capabilities have been poasly applied to a simple impulsive
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orbit transfer to test its effectiveness on a sexgyinamic problem with a known optimal
solution [8]. In this work we apply the exploratiand visual steering capabilities of our

software to the more complex problem formulatioraftinuous-thrust orbital transfers.

ATSV BACKGROUND

The ATSV can explore design spaces statically oradyically. Static data sets are
text or spreadsheet files generated from an eXtenoael in which decision variables
and objective function values for each solution amganized. Dynamic datasets more
fully utilize the potential of the ATSV by integmag visual steering into the exploration
process [9]. Visual steering can be defined asptbeess of observing a global search
and making adjustments to it in real time as thsigter sees fit [6]. It allows the
designer to simultaneously explore the trade spamk exploit new information and
insights as they are gained.

Currently, the ATSV has the ability to specify fitsges of visual steering commands
to generate new data by random sampling, manuaplsam attractor-based sampling,
preference-based sampling, and Pareto sampling.re Metails on these sampling
methods are discussed in Reference [6]. The AT@Misctor based sampling creates
points in the objective space close to a desiredtion, specified by an “attractor”.

A Pareto-modified evolutionary algorithm, specifigeDifferential Evolution [10], is
used to guide the sampling process for the attraPtareto, and preference samplers in
order to generate points in the objective spacen firedimensional discrete and
continuous inputs. Details on the implementatidn Rareto-modified Differential

Evolution and the visual steering commands withirS can be found in Ref. [9].



The ability of the user to “guide” an evolution pess is a recently developed addition
to the Pareto sampler. Guided Pareto Samplingvaltbhe user to choose solutions they
wish to start or continue an evolution process. isTdives the decision maker the
advantage of influencing an evolution as it progesswith his/her intuition or knowledge
gained from current and/or previous visualizati@ml evolution processes. Guided
Pareto Sampling with an example of its applicateodiscussed further in the Results and
Discussion section.

LOW -THRUST ORBITAL MANEUVERS

A spacecraft in orbit can be defined by a set wfosbital elements which describe its
orientation in space. The classical orbital eletmgaemi-major axi|®, eccentricitye,
inclinationi, right ascension of the ascending n@&jeargument of periapsis, and true
anomaly6d) describe the sizea) and shapee] as well as the orientatiom, 2, ») of the
orbit. The sixth elementd) describes the angular position of the spaceaafthe
particular orbit described by the previous fivenedmts.

In order to avoid the singularities associated with classical orbital elements for
circular and/or non-inclined orbits, equinoctiabibal elementsq, h, k, p, g, L) are used
in the derivation of the equations of motion [1IThe simple transformation, shown in

Eq. 1, eliminates all singularities except for th&ograde orbit with = 180°.



Classical to Equinoctial Equatial to Classical
a=a a=a
h=esinw+Q ) e=(h+K)?

k=ecos+rQ)  j=zan(\p'+ )

p=tan(i/2)sin@Q ) 0 =tan(p/q) (1)

g=tan(i/2)cos@Q |
L=0+wtO w=tan*(h/k)-tai* (p/q
g=L-tan(h/k)

Edelbaum et al., [12] using the calculus of vaoiasi, developed the equations of
motion describing how a spacecraft’'s equinoctidlitat elements change with time due

to an applied thrust. A set of these equationglifieal by Kechichian [13], are shown as

x,= f[M]o+ne (2)
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whereg =(0 0 0 0 0 3", which means it is a unit vector in the directiafnL.

The equinoctial element state vectgr and its derivativex,, as well as the adjoint

variable state vector (Lagrange multiplied) and its derivatived are respectively

defined as
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The matrix M] is a 6x3 matrix containing expressions involvipgrtial derivatives of

each state element ix; further information regarding the definition &fl] can be found

in Refs. [13]-[14]. The vectou is a unit vector pointing in the thrust direction,

o= [M]T/T h U; :C950' CO; (5)
=7 =7 Where| u, = sina co
H[M] /]H guW:sin,B

The angles: andf are yaw (in plane) and pitch (out-of-plane) angkspectively, and
is the constant applied acceleration. There areaasting arcs, meanirfgis constant
and positive for all timé¢. The mean motion is given byn = (x /a%)"? wherey is the

gravitational parameter. The scalar Hamiltoniantlies system is defined as

H=A"[M]uf,+1& (6)
where the end conditior = 1.0, corresponds to the minimum-time minimumkfue

transfer.

In this paper, constant acceleration transfereapéored. The equinoctial stak and

the adjoint variable stat® are modified to include spacecraft masand an associated
Lagrange multiplierl,, respectively. The formerly constant applied aecdlonf; is

replaced with the definition
f,.=T/m (7)
whereT is the constant applied thrust amds the instantaneous spacecraft mass.

Previous Work
Some of the earliest to explore optimizing low-8gtrtrajectories using the variation of

parameter equations to model orbital perturbatiwite equinoctial elements as well as



adjoint variables were presented by Edelbaum 2l Due to the limited computing
power at that time, averaging of the state andiadgguations of motion was employed
to allow reasonable computation time. Kechichiaplered a similar problem using
precision-integration of the equations of motiom @eompared the results to Edelbaum’s
averaging technique; the accuracy differences lmtwéhe two techniques were
significant [13]. In his work, the initial adjointariables were optimized using an
iterative scheme based on a general descent metlmie the aim was to optimize an
objective function consisting of a weighted suniref differences between the actual and
desired final orbit properties. The result wasoptimized set of initial adjoint variables
that correspond to the control angle time histordsch creates the minimum-time
minimum-fuel trajectory (assumes no coast arcsinficEO to GEO forf, = 9.8x10°

km/<, as shown in Table 1.

Table 1: Optimal Initial Adjoint Variables for LEO to GEO Transfer Found by
Kechichian [13]

Adjoint Variable Initial Value
Aa.o 1.260484756 sec/km
ho 386.5626962 sec
Jk.0 -9388.262635 sec
Ap.o -2277.132367 sec
Ag.0 -17430.27218 sec
Ao 515.5487187 sec/rad

H 1.002694

TOF 58624.094 s

More recently, the problem has been revisited laydghi [14] in the attempt to search
specific bounds (£5%, £10%, £20%) on the set ofn@ptimal initial adjoint variables
using a variety of evolutionary algorithms. Theuks found in Igarashi’s work closely

matched those found by Kechichian.



Here, we revisit this problem once again using \avwgionary algorithm, specifically
Differential Evolution, which has been integratatbiATSV. The bounds on the known
optimal initial adjoint variables will be extendééyond what was explored by Igarashi
in the attempt to find other optimal or near-optirealutions. Qualitative observations
are made on the effectiveness of the integratiothefuser/designer into the real-time
visualization and multi-objective optimization elenis of ATSV.

Problem Specification

The orbit transfer between the low-Earth orbit #iped in Table 2 (a) and the

geosynchronous orbit specified Table 2 (b) is ttamdfer of interest for this work —

identical to the transfer explored in Refs. [13H1

Table 2: (a) Initial LEO “Baseline” Orbit Characte ristics and (b) Final GEO Orbit

Characteristics

(@) Initial Low-Earth Orbit (b) Final Desired kit
3 7000 (km) agesied | 42000 (km)
=) 0 €desired 0.001
io 28.5° idesired 1°
o 0° Qdesired 0°
Wo 0° (desired 0°
6o -220° Odesired Free

For the constant acceleration problem describethénprevious section, the initial

conditions of the equinoctial statg, are known but the initial conditions of the adjoin
variables/, are unknown. Therefore, the decision space cisnsighe initial conditions

of these six adjoint variables. Givel) andf; (f, = 9.8x10° km/s’), Egs. (2) and (3) are

simultaneously integrated using t&®E45function in MATLAB. At the termination of



integration, the states of interest are the fimplieoctial statex. ;and the Hamiltonian H

of the system.

The objectives are to achieve the desired finalt oRp ..., and minimize time of

flight via the transversality conditiold = 1.0. This “target oriented” objective is
transformed into a “goal oriented” objective by smering the minimization of a
weighted sum of absolute differences between thad fitate and the desired final state, as
shown in Eq. (8). The two objectives can only bmped together in a cost function
because the problem formulation ensures that tleegad compete. Reaching the final
desired orbit is a fundamental objective, but thi@imization of time of flight is an
objective with a preference. Since trajectoriesd tho not reach GEO are not viable, the
minimization of time of flight cannot compete with Note that the weights and the
order of magnitude of the terms comprising f cagnsicantly affect the ability of a
search algorithm to properly converge to an optiseéition.
f = W1 |a-agesired+ W2 [N-Ngesired+ W3 |K-Kesired+ Wa |P-Puesired + W5 |0-Caesied+ We |H-1.0]  (8)

The information in Table 3 summarizes the seardtifips and cases explored in the

Results and Discussion section. An explanationosd we bypass this issue using visual

steering is covered in the next section.

Table 3: Summary of Explored Cases

Constant Acceleration
Search Range: Objective:
+10% of Table 1 Explore decision space immediately surrounding
+25% of Table 1 known optimal solution listed in Table 1 over| a
+50% of Table 1 wider spectrum than Reference [14] and identify
+500% of Table 1 other optimal or near optimal solutions, if any,
within each search range.

10



RESULTS AND DISCUSSION
Optimal Solution Acquisition via Visual Steering

One of the many goals of the ATSV is to use anma®yi's intuition and/or knowledge
gained from prior experience with a particular exegiring problem in order to enhance
search. As with any model implementation using A&V, over the many hours of
sampling the design space, the most productive avigieering commands were
constantly refined as problem-specific wisdom wased. The most effective technique

found for this problem formulation can be describgdhe flow chart in Fig. 1.
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Fig. 1: Optimal Solution Acquisition via Visual Steering Flow Chart

First, the decision space is sampled randomly amfmunly anywhere from 100,000
to 1,000,000 times. The objective and decisiortapare then visualized in a variety of

combinations using the ATSV’s Scatter Plots. Thualization off vs. TOF,Aa.0, Ah.0,

11



Jk.o |8-adesired, |N-aesired €tC. reveals promising solutions that exist frora tAndomly
sampled set. Solutions of interest are then saleand the exploration of the design
space is driven by the Guided Pareto Sampler.

The selection of “solutions of interest” is a pratlspecific and designer-specific
process that can be difficult to quantify becauselies on abstract information such as a
designer’s intuition, knowledge, and/or problemesfie wisdom. Generally, solutions
which have smalf are chosen to guide evolutions in early iteratiohshe exploration
process. The selection of solutions used to “duidolutions away from
preconvergence is somewhat more difficult to qigntbut a general guideline of the
process used for this work is as follows.

Because of the size of the decision space, evolsitaften converge to false optima,
meaning the progress of solution evolution willthaith f >> 0. Pre-convergence issues
may also arise from improper weighting of the temosprising the definition of. If
this occurs, some or all of the steps listed in Eigre revisited untilapproaches zero or
it is determined, by user insight, that no solutgam be found within the given decision
space range and the process is terminated. Ir éodevercome pre-convergence, a
diverse selection of points is chosen to guide @telution. Generally, we choose a
variety of promising solutions by examining whi@mrhs inf are lagging in the evolution
process. An example of promising solution selectising this technique is illustrated in
the three scatter plots shown in Fig. 2. In thxgreple |h-hyesired, [K-Kdesired, @nAdP-Paesired
are “lagging” after an evolution has pre-convergeganing their magnitudes are much
greater than the other terms comprisihg As shown, we select points which

simultaneously minimizé and these lagging terms to guide the next evaiutidhis

12



technique of guiding the search with lagging tersisimplified for the purposes of
demonstration in Fig. 2. The solutions comprismgingle guided generation often
include the best known solution, lagging term sohg, as well as a healthy set (about
50%) of random solutions within a full or narronsgaectrum decision space. By visually
steering the trade space with the ATSV, we cancetfely locate optimal solutions

without tediously fine-tuning the weights on spaxcdbjectives.

f_weighted vs. h_diff f_weighted vs. k_diff f_weighted vs. p_diff
2181

ghted

f_wei

. - 1,945 Q
zoEzEEWO00D 0485 0207 27006 544263 0012 0.049

o.0zz [

h diff k_diff p_diff

Fig. 2: Example Selection of Solutions of Interesised to Guide the Next Evolution

The Guided Pareto Sampler’s ability to pause, adjasd alter an evolution can
drastically increase the effectiveness of evolrgnsearch. Fig. 3 (a)-(f) shows the
progression of many Guided Pareto searches towatichality over many iterations of
the technique described by Fig. 1. Each plot shioves time of flight, and the solutions
chosen to guide a particular evolution are hightdghby black circles. Using this
method, the progression toward false optima, wifisrapproach towards zero is halted,
as shown in Fig. 3 (b) and (d), is easily overcori¢ith a combination of visualization,
evolutionary search, and intuition/knowledge insgiradjustments, we are able to

visually “steer” solutions toward optimality in @dto obtain minimum-time, minimum-

13



fuel, constant acceleration, or constant thrusit drdnsfers (note that minimum-time and

minimum-fuel transfers are the same if there areoast arcs allowed).

f_weighted vs. TOF f_weighted vs. TOF f_weighted vs. TOF

3.802)

ghted
ghted

2505

_wei
ghted

f_wei
f_wei.

1.207] 1.207]

(@) (b)

azEaEa aTEIED 5.102E4 650084

438364 4787E4 5.102E4 5 595E4 3 ey FETET T T 3
TOF

TOF TOF

f weighted vs. TOF f_weighted vs. TOF f_weighted vs. TOF

3893

ighted

2508

ghted
ghted

2504

f_wei
£ wei
f_wei

1:208|

1.209)

(d)

0|
438IEA 47ETET 8264

TOF

(f)

4383E4, 476764 182E4 5506E9 B.00
a383Ed a7e7Ed BzEq 5 6oBED ®

TOF TOF

550064 E

Fig. 3: Progression of a Typical Search Using the @ded Pareto Sampler

In order to quantify the point at which the minimin of f is sufficient for
optimality, the final state of the solution expldr@ the next section (listed in Table 5) is
shown in Table 4. In general, solutions which hiaee the order of an arbitrarily chosen
tolerance of 1x10 or less are considered optimal, and the valugbefinal state of the

classical elements in this table are a good measuhee accuracy of all optimal solutions

presented in this work.
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Table 4: Typical Optimal Final Classical State

Goal Sufficiently Optimal

Adesired | 42000 (km) 42000 (km)
€4esired 0.001 0.000999677
idesired 1° 0.99999726°
Qdesired 0° 9.76092E-05°
(Wdesired 0° 0.010314043°
Odesired Free Free

H 1.0 0.999999

f 0 4.44%x10°

Constant Acceleration

Within the decision space search ranges of £10%%2and +50% of the known
optimal solution listed in Table 1, each evolutijmmocess converged toward this known
solution. For the £500% search range, some ewolstconverged toward the solution
listed in Table 1 and others converged to a satutihich the author considers to be
clearly distinct. This “near optimal” solution aadcomparison with the optimal solution
found in Reference [13] are shown in Table 5. althh only two of the six elements of

A, converge to within 1% of the values listed in Tall the time of flight for the near

optimal solution is only 0.007% greater. Furthereydhe time history of the classical
orbital elements and the thrust vector control esg@lre almost identical when compared
to corresponding time histories for the solutistdd in Table 1, as shown in Fig. and
Fig. 5. Moreover, trends &, i, e,a, and f with time closely match the time history
behavior from References [13] and [14].

The assumption thath, and 4,, are less sensitive than the other initial adjoint

variables to the solution quality may be fair, but idea that these variables are largely

15



insensitive is not. Upon replacing the valueigf for the optimal set listed in Table 5
with the optimal value from Reference [13], whicke will call 4, **, the value off
increases by five orders of magnitude. Similarawedr is evident when applying this
test foripe Ano andip, simultaneously, and various randomly chosen vahetg/een

[flp,o lp,o[ls]] and [’1h,o ih,o[ls]]-

Table 5: “Near Optimal” Adjoint Variable Initial Co nditions for Constant

Acceleration LEO to GEO Transfer

A, Optimal Value | % Difference from Reference [13]
Aao(S€C/KM) 1.278695 1.445%
Jh.o (S€C) 590.5856 52.779%
/.0 (SEC) -9333.9 -0.579%
Ap.o(S€C) -3397.12 -49.184%
Ag.0(SEC) -17526.5 -0.552%
ALo(sec/rad) 503.6537 2.307%
TOF (sec) 58628.61 0.007%
45000 30
: Ref.[13]
(@) 22 & +500%
€ 0 / 25 H“‘*
~35000 =
e / (@]
© / 320 \—\\
%25000 7 c15 \
o =
) / 210
=15000 - S
= v =51 _ iRef[13
g L © =0 N\
5000 T T T T 0 T f f f T T T
0 10 12 14 16 0 2 10 12 14 16

4 6 8 4 6
Time (Hours) Time ?Hours)

Fig. 4: (a) Semi-Major Axis and (b) Inclination asa Function of Time for Optimal
Trajectory found within £500% of Reference [13]
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Fig. 5: Yaw « and Pitch # as a Function of Time for Optimal Trajectory found

within £500% of Reference [13]

The existence of a near optimal solution is intingy and implies that there are
multiple distinct sets of adjoint variable initiebnditions which lead to nearly the same
behavior of the orbital elements with time. Acdagly, the concept of “optimality” as
referred to in this work should be considered raamal, and not truly mathematically
optimal.

SUMMARY AND CONCLUSIONS

ATSV is an effective solution visualization and &ation tool for the constant
acceleration LEO to GEO transfer discussed in whisk. The “human-in-the-loop”
capabilities provided by the ATSV’s sampling teaues, the Guided Pareto Sampler in
particular, played an integral role in the effidieacquisition of optimal trajectories.
Within a £50% search of a known optimal solutiowpletionary search converged
toward this solution. The +500% search revealedpitesence of a clearly distinct near-

optimal set of adjoint variable initial conditionsyhich result in very similar time
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histories of the classical orbital elements whempgared with a known optimal
trajectory.

Any extended work on this topic should considerdbarch of an even wider spectrum
of decision variables for the constant accelerapimblem formulation. More sensitivity
cases might provide further insight into the relaship between the adjoint variable
initial conditions and the time histories of thasdical orbital elements and thrust control
angles. The sensitivity of optimal trajectoriespterturbations in the final desired orbit
could be investigated as well. In the interesinmidel accuracy and actual applicability,
the addition of], effects to the system dynamics as well as com¢gran the final true
anomaly could be added to the problem formulati®mce most of these ideas increase
the difficulty of search, in order to implement ¢keedeas in a reasonable time frame, the
designer would benefit from the use of distribuged/or cluster computing. With this in
mind, the ATSV software development team is cutyeptototyping a software addition
to integrate the power of parallel computing witte teffectiveness of “human-in-the-
loop” optimization.
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