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ABSTRACT 

Trade space exploration is a promising decision-making paradigm that provides a visual 

and more intuitive means for formulating, adjusting, and ultimately solving design 

optimization problems.  This is achieved by combining multi-dimensional data 

visualization techniques with visual steering commands to allow designers to “steer” the 

optimization process while searching for the best, or Pareto optimal, design(s).  In this 

thesis, results from an empirical assessment of the performance of these visual steering 

commands are presented.  This is done by performing a study that compares the 

performance of different combinations of these visual steering commands to automated 

samplers, including a multi-objective genetic algorithm, that are executed “blindly” on 

the same design problems with no human intervention.  The resultant Pareto frontiers 

generated by the combinations of visual steering commands and automated samplers are 

compared to one another using the ε-performance metric to assess the extent to which 

they have identified the reference (or best known) Pareto frontier.  Specifically, three test 

problems are examined: (1) a sandwich beam, (2) an aircraft wing, and (3) a vehicle 

configuration problem.  The results of this study indicate that the visual steering 

commands – depending on the complexity of the test problem – can provide a 3x - 6x 

increase in the number of Pareto solutions that are obtained when the human is “in-the-

loop” during the optimization process compared to an automated sampler.  The 

improvements are even more dramatic in cases where automated samplers have a difficult 

time finding feasible solutions.  In addition user-guided trials can provide from a 10x - 

32x increase in the number of Pareto solutions obtained over random searching.  As such, 
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this study provides empirical evidence of the benefits of interactive visualization-based 

strategies to support engineering design optimization and decision-making.  
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PREFACE 

Part of this work, namely, parts of the introduction, review of related work, overview of 

the visualization software, and some of the experimental setup and results of the vehicle 

configuration model experiment, comes from work done for a paper appearing in the 

2008 ASME International Design Engineering Technical Conferences (IDETC).  This 

thesis is an extension of that work in that it provides further support for the vehicle 

configuration model experiment results and demonstrates the usefulness of visual steering 

commands in building a suitable Pareto frontier on additional problems of varying 

complexity. 

 

As first author of the aforementioned paper, the author of this thesis contributed in a 

number of ways.  The first was helping to write the background information used in the 

paper.  The main contributions came from creating and running the user-guided trials, 

assisting the other user with creating a second set of data for those trials, completing the 

analysis done on the user-guided trials, and establishing the conclusions and suggestions 

for future work.  In addition, the author reviewed and revised the paper as a whole. 
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CHAPTER 1 

INTRODUCTION 

Many engineering designers employ optimization-based tools and approaches to help 

them make decisions particularly during the design of complex systems such as 

automobiles, aircraft, and spacecraft, which require tradeoffs between multiple 

conflicting and competing objectives.  Trade space exploration is a promising alternative 

decision-making paradigm that provides a visual and more intuitive means for 

formulating, adjusting, and ultimately solving design optimization problems.  Trade 

space exploration is an embodiment of the Design by Shopping paradigm advocated by 

Balling [1]: designers want to “shop” to gain intuition about trades, what is feasible and 

what is not, and to learn about their alternatives first before making their decisions.  

Balling noted that the traditional optimization-based design process of “1) formulate the 

design problem, 2) obtain/develop analysis models, and 3) execute an optimization 

algorithm” often leaves designers unsatisfied with their results because the problem is 

usually improperly formulated: “the objectives and constraints used in optimization were 

not what the owners and stakeholders really wanted…in many cases, people don’t know 

what they really want until they see some designs” [1].  Studies in other fields have 

resulted in similar findings.  For example, Wilson and Schooler [2] noted that people do 

worse at some decision tasks when they are asked to analyze the reasons behind their 

preferences or assess all of the attributes of their choices.  Likewise, Shanteau [3] 

observed that when people are dissatisfied with the results of a rational decision making 

process, they often change their ratings to achieve their desired result [4]. 

 

1 



 

In order to support this trade space exploration, researchers at the Applied Research 

Laboratory (ARL) and Penn State have developed the ARL Trade Space Visualizer 

(ATSV) [4,5,6], a Java-based application that is capable of visualizing multi-dimensional 

trade spaces using glyph, 1-D and 2-D histogram, 2-D scatter, scatter matrix, and parallel 

coordinate plots, linked views [7], and brushing [8].  Figure 1 shows several examples of 

its multi-dimensional data visualization capability.  The glyph plot (left) can display up to 

seven dimensions by assigning variables to the x-axis, y-axis, z-axis, text labels, size, 

color, orientation, and transparency of the glyph icons.  The scatter matrix (top right), a 

grid of all 2-D scatter plots, is useful for visualizing trends and two-way interactions in 

the data.  Histograms (bottom right) show the distribution of samples in each dimension.   

 
Figure 1.  Three Displays of Data in ATSV 

The design variable (input) and performance (output) data for different design 

alternatives can either be generated off-line and then input into ATSV for visualization 

and manipulation or it can be generated dynamically “on-the-fly” by linking a simulation 

model directly with ATSV using its Exploration Engine capability [4].  If the simulation 
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model is too computationally expensive to be executed in real-time, then low-fidelity 

metamodels can be constructed and used as approximations for quickly searching the 

trade space [9].   

 

Currently, there is a considerable amount of research in formalizing methods, tools, and 

procedures to support trade space exploration.  Of particular interest for this thesis are 

interactive optimization-based methods, falling primarily into the area of computational 

steering, which gives the user (e.g., a designer) the ability to interact with a simulation 

during the optimization process to help “steer” or guide the search process toward what 

looks like an optimal solution.  The designer is presented with a visual representation of 

the optimization process and then by using his/her intuition, heuristics, and/or some other 

methods, the designer adjusts the design space in order to move toward something that 

may not have been intuitive at the beginning of the simulation.  For example, Wright, et 

al. [10] applied computational steering in designing the geometry and selecting the grade 

of glass for a furnace.  Kesavadas and Sudhir [11] created large-scale manufacturing 

simulations by allowing users to make quick changes “on-the-fly” and then continue with 

the simulation.  Messac and Chen [12] proposed an interactive visualization method 

wherein the progress of the optimization is visualized – but not steered – throughout the 

process.  Finally, Visual Design Steering [13,14] allows users to stop and redirect the 

optimization process to improve the solution; however, their visualization capabilities are 

currently limited to 2-D and 3-D representations of constraints and objectives [4]. 
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In line with this ongoing research to support trade space exploration, this thesis presents 

results from an empirical assessment of the performance of visual steering commands – 

visually-specified controls that allow designers to “steer” an optimization algorithm – 

that were developed previously [4].  This is done by performing a study that compares the 

performance of different combinations of these visual steering commands to automated 

samplers, including a multi-objective genetic algorithm, that are executed “blindly” on 

the same design problems with no human intervention.  The resultant Pareto frontiers 

generated by the combinations of visual steering commands and automated samplers are 

compared to one another using the ε-performance metric to assess the extent to which 

they have identified the reference (or best known) Pareto frontier.  Specifically, three test 

problems are examined: (1) a sandwich beam, (2) an aircraft wing, and (3) a vehicle 

configuration problem.  Related research in computational steering is discussed next in 

Chapter 2 along with a review of the visual steering commands available in ATSV.  

Chapter 3 describes the test problems used in this work and the experimental set-up for 

this study.  The results and findings are discussed in Chapter 4, and conclusions and 

future work are outlined in Chapter 5. 
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CHAPTER 2 

REVIEW OF RELATED WORK AND OVERVIEW OF VISUAL STEERING 

COMMANDS 

2.1 Related Work 

Scott, et al. [15] recently proposed that including humans “in the loop” throughout the 

decision-making process improves the outcome of the process.  They investigated the 

effects of integrating humans into the optimization process, and found that “combining 

the human’s superior intelligence with the computer’s superior computational speed can 

result in better solutions than either could produce alone”.  Additional advantages include 

learning about the problem and the interrelationships between objectives and having the 

ability to guide the solution process in a desired direction and possibly even changing 

his/her mind while learning [16]. Solutions generated through human interaction are 

better understood by the user than solutions merely given to them by an optimization 

algorithm.  Moreover, the computational costs can be significantly reduced since only 

solutions of interest to the decision-maker are generated [15]. 

 

Madar, et al. [17] are investigating the effects of human interaction on a particular 

optimization algorithm, namely, particle swarm optimization.  By using their visual, 

cognitive, and strategic abilities, human users can improve the performance of the 

computer search algorithm.  Thus, interactive optimization approaches seek to combine 

expert knowledge with computational power.  Michalek and Papalambros [18] propose in 

their work on architectural layouts that “the designer’s interaction causes the program to 

dynamically change the optimization representation on-the-fly by adding, deleting, and 
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modifying objectives, constraints, and structural units”.  Their “on-the-fly” methodology 

is applicable for architectural design, but the usefulness of it in complex system design 

conceptualization requires further exploration. 

2.2 Overview of Visual Steering Commands 

Visual steering commands help a designer to form their preferences while they explore 

(i.e., “shop”) the trade space.  They range in scope from commands used to sample the 

entire trade space to commands which focus around a region or point of interest.  ATSV 

provides a suite of controls, including these visual steering commands, once an 

Exploration Engine is loaded, to help designers navigate and explore the trade space by 

(1) randomly sampling the design space, (2) searching near a point of interest, (3) 

searching in a direction of preference, or (4) searching for the Pareto frontier [4].  A brief 

summary [4] of each of these visual steering commands follows.  

2.2.1 Design Space Sampler 

Design space samplers are used to populate the trade space and are typically invoked if 

there is no initial data available or when the designer simply wants to explore the design 

space.  The user can sample the design space manually using slider bar controls for each 

input dimension or randomly.  When sampling randomly, the user specifies the number 

of samples to be generated and the bounds of the multi-dimensional hypercube of X.  

Monte Carlo sampling then randomly samples the inputs – drawing from a uniform, 

normal, or triangular distribution – and executes the simulation model, storing the 

corresponding output in the database.  The bounds of the design variables can be reduced 
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at any point to bias the samples in a given region if desired.  An example is shown in 

Figure 2.   

 
 (a) 100 Initial Samples (b) 100 New Samples in a Reduced Region of Interest 

Figure 2.  Example of Design Space Sampler 

2.2.2 Point Sampler 

Point samplers, also referred to as attractors, are used to generate new sample points near 

a user-specified location in the trade space.  The attractor is specified in the ATSV 

interface with a graphical icon  that identifies an n-dimensional point in the trade space, 

and then new sample points are generated near the attractor – or as close as they can get 

to it.  Unbeknownst to the user, the attractor generates new points using the Differential 

Evolution (DE) algorithm [19], which assess the fitness of each new sample based on the 

normalized Euclidean distance to the attractor.  As the population evolves in DE, the 

samples get closer and closer to the attractor.  An example is shown in Figure 3 where the 

user specifies an attractor to fill in a “gap” in the trade space (see Figure 3a).  The new 

samples cluster tightly around Attractor_1 as seen in Figure 3b. 

7 



 

       
 (a) 100 Initial Samples (b) New Samples Generated Near the Attractor 

Figure 3.  Example of Point Sampler using an Attractor 

2.2.3 Preference-based Sampler 

Preference-based samplers allow users to populate the trade space in regions that 

perform well with respect to a user-defined preference function.  New sample points are 

also generated by the DE algorithm, but the fitness of each sample is defined by the 

user’s preference structure instead of the Euclidean distance.  An example of the 

preference-based sampler is shown in Figure 4.  Using ATSV’s brushing and preference 

controls, the user specifies a desire to minimize Obj1 and maximize Obj3 with equal 

weighting (see Figure 4a).  Figure 4b shows the initial samples shaded based on this 

preference, and Figure 4c shows the new samples, where the concentration of points 

increases in the direction of preference, namely, the upper left hand corner of the plot. 
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(a) Brush Settings Indicating User Preference Structure 

  
 (b) Initial Samples Shaded Based on Preference (c) New Samples Generated in Direction of Preference 

Figure 4.  Example of Preference-based Sampler 

2.2.4 Pareto Sampler 

Pareto samplers are used to bias the sampling of new designs in search of the Pareto 

frontier once the user has defined his/her preferences on the objectives.  The DE 

algorithm is again used to accomplish this sampling but is modified to solve multi-

objective problems [20].  An example of this sampler is shown in Figure 5.  Using the 

same preference as before (i.e., minimize Obj1 and maximize Obj3 with equal 

weighting), Figure 5a shows the Pareto points in the initial samples while Figure 5b 

shows the Pareto frontier after executing 7 generations of the DE with a population size 

of 25 points.  The points are also shaded to indicate the region of high (red) and low 

(blue) preference along the Pareto frontier. 
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 (a) Initial Samples (Pareto Points Denoted by +) (b) New Samples Generated Along Pareto Frontier  

Figure 5.  Example of Pareto Sampler 

These visual steering commands can be used together in any combination to explore the 

trade space.  When used in concert with ATSV, designers have a powerful multi-

dimensional visualization tool with the capability to “steer” the optimization process 

while navigating the trade space to find the best design.  To determine the extent to which 

these visual steering commands are effective in locating good design solutions, the study 

described next in Chapter 3 is developed to compare the performance of different 

combinations of these visual steering commands to automated samplers, including a 

multi-objective genetic algorithm, that are executed “blindly” on the same design 

problems with no human intervention.  The resultant Pareto frontiers generated by the 

combinations of visual steering commands and automated samplers are compared to one 

another by means of the ε-performance metric to assess the extent to which they have 

identified the reference (or best known) Pareto frontier.  Specifically, three test problems 

are examined:  (1) a sandwich beam design problem, (2) an aircraft wing design problem, 

and (3) a vehicle configuration problem.   
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CHAPTER 3 

EXPERIMENTAL SET-UP AND TEST PROBLEMS 

3.1 Test Problems 

As stated previously, the objective in this thesis is to assess the performance of the visual 

steering commands discussed in Chapter 2 during trade space exploration.  To do so, 

three test problems are examined, ranging in complexity from a two objective problem to 

a five objective problem with varying numbers of inputs and constraints, as summarized 

in Table 1.  While stating general preferences in each of these problems beforehand may 

seem counter-intuitive to trade space exploration, the end goal in this study is to assess 

the effectiveness of the visual steering commands used in conjunction with ATSV in 

obtaining the Pareto frontier with a limited number of function evaluations and to 

demonstrate that doing so is more effective than simply allowing an automated search to 

run “blindly”.  Specifically, the problems examined consist of a sandwich beam [21] 

design problem, a wing [22] design problem, and vehicle configuration model [23,24,25].  

Each problem is described in more detail next. 

Table 1.  Summary of Test Problems 

Test Problem Problem Formulation Origin of 
Problem # Inputs # Objectives # Constraints 

Sandwich Beam 5 2 3 [21] 
Aircraft Wing 6 3 3 [22] 

Vehicle Configuration Model 11 5 1 [23,24,25] 

3.1.1 Sandwich Beam Design Problem 

The first test problem examined is a sandwich beam design problem developed by 

Messac [21].  This problem has five input design variables, two objectives, and three 

constraints.  It consists of a motor vibrating on top of a supporting beam of length L, 

width b, and is symmetric about its center plane.  The beam is made up of three layers of 
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material with heights d1, d2, and d3, as shown in Figure 6 and properties as shown in 

Table 2.  The objective in this problem is to minimize the Cost and maximize the 

Fundamental Frequency subject to constraints on the mass of the beam and thickness of 

the material layers as well as bounds on the input variables. 

 

Figure 6.  Sandwich Beam Design Variable Definition [26] 

The sandwich beam problem can be summarized as follows: 
 
 Minimize:  Cost (1) 
 Maximize: Fundamental Frequency 
 
 Subject to:  d2 – d1 ≥ 0.01 
  d3 – d2 ≥ 0.01 
  Mass ≤ 2800 
 
 where: 3 ≤ L ≤ 6 
  0.05 ≤ d1 ≤ 0.50 
  0.10 ≤ d3 ≤ 0.55 
  0.20 ≤ d3 ≤ 0.60 
  0.35 ≤ b ≤ 0.50 
   
  Cost ($) = 2bL[c1d1 + c2(d2 − d1) + c3(d3 − d2)] 
 
  Fundamental Frequency (Hz) = (π/2L2)(EI/μ)1/2 

  EI = (2b/3) [E1d1
3 + E2(d2

3 − d1
3) + E3(d3

3 − d2
3)] 

  μ = 2b [ρ1d1 + ρ2(d2 − d1) + ρ3(d3 − d2)] 
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Table 2.  Material Properties for the Sandwich Beam Design Problem 

Material Density, ρ (kg/m3) E (N/m2) c ($/m3) 

Layer 1 100 1.60E+09 500 
Layer 2 2770 7.00E+10 1500 
Layer 3 7780 2.00E+11 800 

 

3.1.2 Aircraft Wing Design Problem 

The second problem used in this study is an aircraft wing design problem.  The original 

problem created by Simpson and Meckesheimer [22] is a single objective problem with 

the goal to minimize Cost; however, for the purpose of this study it was modified to 

include two more objectives.  The original problem has six bounded input design 

variables to size the wing, constraints on the Range, Buffet Altitude, and Takeoff Field 

Length, and as mentioned, the objective is to minimize Cost.  The problem used in this 

case is modified by adding two objectives: (1) maximize Range and (2) minimize 

Takeoff Field Length.  Figure 7 defines the input variables for sizing the wing.  In the 

model, the output variables (Cost, Range, Buffet Altitude, and Takeoff Field Length) 

have been normalized to range from 0 to 1. 

Wing
Spar
Nacelle

Key:

S
em

i-s
pa

n

YCoff

 AreaWing
Span ratio Aspect

2
=

Sweep
angle

chord Root
chord Tip  ratio Taper =

CL

Fan diameter

Qtr
chord  

Figure 7.  Wing Problem Input Variable Definition [22] 
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The wing design problem can be summarized as follows: 

 Minimize:  Cost (2) 
 Maximize: Range 
 Minimize:  Takeoff Field Length 
 
 Subject to:  Range ≥ 0.589 
  Buffet Altitude ≥ 0.603 
  Takeoff Field Length (TOFL) ≤ 0.377 
 
 where: 900 ≤ Semi-span, x1 ≤ 1150 
  8 ≤ Aspect ratio, x2 ≤ 13 
  31 ≤ Sweep angle, x3 ≤ 37 
  0.15 ≤ Taper ratio, x4 ≤ 0.25 
  0.75 ≤ Y Coff, x5 ≤ 1 
  80 ≤ Fan Diameter, x6 ≤ 90 
 
Cost = 0.2854 - 0.005x6 + 0.3109x5 - 0.0122x3 - 0.2095x4 - 0.4836x2 + 0.4431x1 + 
0.1037x6x6 - 0.0592x5x5 - 0.0204x3x3 + 0.1057x4x4 + 0.2494x2x2 + 0.0218x1x1 + 
0.0581x6x5 + 0.0025x6x3 + 0.0034x6x4 + 0.0502x6x2 - 0.0326x6x1 + 0.1254x5x3 - 
0.1362x5x4 + 0.1664x5x2 - 0.4223x5x1 + 0.1039x3x4 - 0.0155x3x2 - 0.0735x3x1 - 
0.1281x4x2 + 0.2183x4x1 - 0.2109x2x1 
 
Range = 0.3576 - 0.0329x6 + 0.1978x5 + 0.0149x3 - 0.0389x4 - 0.4652x2 + 0.4453x1 + 
0.0149x6x6 - 0.051x5x5 + 0.0075x3x3 - 0.0229x4x4 + 0.0987x2x2 - 0.0188x1x1 - 0.0524x6x5 
- 0.0272x6x3 + 0.0281x6x4 - 0.0147x6x2 + 0.0083x6x1 + 0.1018x5x3 + 0.0563x5x4 - 
0.0349x5x2 + 0.064x5x1 + 0.0073x3x4 + 0.0176x3x2 + 0.0341x3x1 + 0.1063x4x2 - 
0.0374x4x1 + 0.0143x2x1 
 
Takeoff Field Length = 0.2884 - 0.2896x6 + 0.3376x5 + 0.0088x3 - 0.0478x4 - 0.1448x2 + 
0.1239x1 + 0.0714x6x6 - 0.029x5x5 + 0.0148x3x3 + 0.0068x4x4 + 0.2251x2x2 + 0.1654x1x1 
- 0.12x6x5 - 0.0475x6x3 + 0.0426x6x4 - 0.0486x6x2 - 0.1058x6x1 + 0.1712x5x3 + 
0.0071x5x4 - 0.0887x5x2 + 0.0759x5x1 + 0.0028x3x4 - 0.0056x3x2 + 0.064x3x1 + 
0.0063x4x2 + 0.0456x4x1 - 0.2902x2x1 
 
Buffet Altitude = 0.617 - 0.1221x5 - 0.0485x3 + 0.0141x4 - 0.4507x2 + 0.6968x1 + 
0.0248x5x5 + 0.0277x3x3 + 0.011x4x4 - 0.0873x2x2 - 0.295x1x1 - 0.061x5x3 - 0.0789x5x4 + 
0.0546x5x2 - 0.1674x5x1 - 0.0008x3x4 + 0.0422x3x2 - 0.0371x3x1 + 0.017x4x2 - 0.0507x4x1 
+ 0.2845x2x1 

3.1.3 Vehicle Configuration Design Problem 

The final problem used in this study is a vehicle configuration model (VCM) that was 

developed to evaluate the technical feasibility of new vehicle concepts [23,24,25].  Table 
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3 summarizes the problem definition that is used for this example.  The inputs to the 

model are eleven high-level vehicle design parameters: ten continuous variables that 

define overall exterior dimensions and positions of the occupants, and one discrete 

variable, H, that defines the vehicle’s powertrain as being one of six options: 

[1,2,3,4,5,6].  There are seven outputs from the model, including five measures of 

performance, vehicle mass, and total constraint violation (ConVio), which is zero when 

all of the constraints internal to the model are satisfied (i.e., ConVio = 0).  The 

continuous design variables are normalized to [0,1] based on the input bounds while the 

objectives and vehicle mass are scaled against the baseline model.  As noted in the table, 

it is desirable for Obj1 to be smaller than the baseline value while larger values are better 

for the other four objectives. 

Table 3.  VCM Problem Definition [4] 
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3.2 Description of User Trials 

Two sets of user trials are defined for each of the three test problems based on an 

allocated number of function evaluations (~5,000 and ~10,000) that could be used, and 

each set of trials is run three times to account for any randomness in the algorithms, 

placement of attractors, or specification of brush/preferences controls.  The function 

evaluation limits of 5,000 and 10,000 were set to allow for significant exploration of the 

trade space, yet they do not allow for an exhaustive search that would likely yield the 

entire Pareto frontier for each problem in every trial, as this is not the goal of the study.  

While there are nearly an infinite number of combinations of brushing, preference 

controls, and visual steering commands that could be implemented in ATSV, the trials 

are defined by stepping through a process that feels “natural” to create the first version 

(v1) of a trial and then those steps are replicated as accurately as possible to generate the 

second (v2) and third version (v3) of that trial.  The first version of each trial is created 

by a user with a moderate experience level using ATSV and moderate familiarity with the 

test problems.  The second and third versions are generated by users with a beginner level 

of experience using ATSV and limited familiarity with the test problems.  This is done 

multiple times for each problem, creating five different combinations (Trials 1-5) that 

each used approximately 5,000 function evaluations and five different combinations 

(Trials 6-10) that each used approximately 10,000 function evaluations. 

 

For the first two test problems (sandwich beam and aircraft wing), one trial in each group 

(5,000 and 10,000 function evaluations) is dedicated to running solely the Pareto sampler 

and one for running only the basic sampler over the entire input space.  This is done to 

allow for comparison of the remaining trials to an automated search in showing how 

16 



 

quickly the Pareto frontier is achieved.  The vehicle configuration problem also contains 

a trial in each group that uses only the basic sampler, but it does not contain one that uses 

only the Pareto sampler; the user trials are instead compared to a multi-objective genetic 

algorithm [23,24,25]. 

 

Most trials begin with a relatively small set of randomly generated samples before 

proceeding to different combinations of samplers.  This is done to give some perspective 

of the size and shape of the trade space as well as making some initial observations about 

relationships and tradeoffs.  Initial motivation for setting some of the attractors comes 

from the fact that many designers use pair-wise comparisons in making decisions [27]; 

comparing only two objectives makes it easy to see relationships among them.  However, 

not all attractors are placed for this reason; others are placed in an attempt to fill in gaps 

(similar to how the Gap Analyzer was used [25]) in the Pareto frontier, or to push the 

frontier toward optimality as the trade space exploration process unfolds.  The preference 

and Pareto samplers are also used in an attempt to fill in the Pareto frontier.  Specific 

details for each problem follow. 

3.2.1 Settings for Sandwich Beam Design Problem 

The ATSV set-up and parameter settings for all trials are shown in Figure 8.  Table 4 and 

Table 5 (trials are intentionally out of order so that the table fits on the page) describe the 

specific combination of visual steering commands and brush/preference controls used for 

Trials 1-5 and Trials 6-10, respectively.  Unless otherwise specified in the trial 

description, default option values are used (see Figure 8c of generation size = 25, 

population limit = 500, and the Best1Bin selection strategy). 
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Observations made about the trade space quickly reveal that points approaching values 

near (L = 3, b = 0.35, Layer2Thick (d2 – d1) = 0.01, and Layer3Thick (d3 – d2) = 0.01) 

dominated all other points in the feasible region.  For this reason, many attractors contain 

some or all of these values.  In addition, this is the motivation for Trials 5 and 10, which 

sample specifically near those designs.  By sampling in this manner, all points generated 

contain (L = 3, b = 0.35) and have a much better chance of achieving (Layer2Thick = 

0.01, and Layer3Thick = 0.01), especially Trial 10.  Figure 9 shows the Pareto frontiers 

obtained by all three versions of Trial 3 while Figure 10 shows the Pareto frontiers 

obtained by all three versions of Trial 10, showing how all three versions of a trial result 

in similar Pareto frontiers. 
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 (a) Basic Sampler (b) Preferences for Pareto Sampler 

  
 (c) Sampler Options (d) Preference Control Settings 

Figure 8.  ATSV Set-up for the Sandwich Beam Design Problem Trials 
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Table 4.  Specification of Visual Steering Commands for the Sandwich Beam Design 
Problem Trials 1-5 

Trial 1 (Total Points:  5,050) Trial 2 (Total Points:  5,050)
- Basic sampler:  250 runs 
- Generation size changed to 50 for everything 
- Brush and preference controls:  Maximize (100) Freq, 
Minimize (-100) Cost, Mass ≤ 2800, Layer2Thick ≥ 0.01, 
Layer3Thick ≥ 0.01 
- Preference sampler 
- Brush and preference controls:  Minimize (-100) L, Minimize (-
100) b 
- Preference sampler 
- Brush and preference controls:  L (0), B (0) 
- Point attractors: 

- [Cost = 562.028, Freq = 318.945] 
- [Cost = 477.137, Freq = 312.950, L = 3.000, b = 0.350, 

Layer2Thick = 0.010, Layer3Thick = 0.010] 
- [L = 3.000, b = 0.350, Mass = 400, Layer2Thick = 

0.010, Layer3Thick = 0.010] 
- [L = 3.000, b = 0.350, Mass = 1,016.703] 
- [L = 3.000, b = 0.350, Layer2Thick = 0.010, 

Layer3Thick = 0.010] 
- Point attractor:  Population limit changed to 1,000 

- [L = 3.000, b = 0.350, Layer2Thick = 0.010, 
Layer3Thick = 0.010] 

- [L = 3.000, b = 0.350] 

- Preference controls: 
- Maximize (100) Freq 
- Minimize (-100) Cost 

- Pareto sampler:  Generation size 
changed to 50, population limit 
changed to 5,000 
- Brush and preference controls: 

- Mass ≤ 2800 
- Layer2Thick ≥ 0.01 
- Layer3Thick ≥ 0.01 

Trial 3 (Total Points:  5,425) Trial 4 (Total Points:  5,000)
- Basic sampler:   500 runs 
- Generation size changed to 50 for everything 
- Brush and preference controls:  Maximize (100) Freq, 
Minimize (-100) Cost, Mass ≤ 2800, Layer2Thick ≥ 0.01, 
Layer3Thick ≥ 0.01 
- Pareto sampler 
- Point attractors:  Population limit changed to 1000 

- [L = 3.000, b = 0.350, Layer2Thick = 0.010, 
Layer3Thick = 0.010] 

- [Cost = 507.753, Freq = 353.717, L = 3.000, b = 0.350, 
Layer2Thick = 0.010, Layer3Thick = 0.010] 

- [Cost = 560.636, Freq = 429.257, L = 3.000, b = 0.350, 
Layer2Thick = 0.010, Layer3Thick = 0.010] 

- [Cost = 243.340, Freq = 155.875, L = 3.000, b = 0.350, 
Layer2Thick = 0.010, Layer3Thick = 0.010] 

- [Cost = 630.219, Freq = 453.237, L = 3.000, b = 0.350, 
Layer2Thick = 0.010, Layer3Thick = 0.010] 

- Point attractor: 
- [Cost = 662.227, Freq = 466.427, L = 3.000, b = 0.350] 

- Basic sampler:  5000 runs 
- Brush and preference controls: 

- Mass ≤ 2800 
- Layer2Thick ≥ 0.01 
- Layer3Thick ≥ 0.01 

Trial 5 (Total Points:  5,000) 
- Basic sampler:  500 runs 
- Basic sampler:  500 runs (9x) 

- L:  3.0 – 3.0 (each run) 
- B:  0.35 – 0.35 (each run) 
- d1:  0.05 – 0.10 (shifted up by 0.05 each run until upper limit is reached) 
- d2:  0.10 – 0.15 (shifted up by 0.05 each run until upper limit is reached) 
- d3:  0.20 – 0.25 (shifted up by 0.05 each run until upper limit is reached) 

- Brush and preference controls: 
- Maximize (100) Freq 
- Minimize (-100) Cost 
- Mass ≤ 2800 
- Layer2Thick ≥ 0.01 
- Layer3Thick ≥ 0.01 
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Table 5.  Specification of Visual Steering Commands for the Sandwich Beam Design 
Problem Trials 6-10 

Trial 6 (Total Points:  10,849) Trial 10 (Total Points:  10,000)
- Basic sampler:   250 runs 
- Generation size changed to 50 for everything 
- Brush and preference controls: 

- Maximize (100) Freq 
- Minimize (-100) Cost 
- Mass ≤ 2800 
- Layer2Thick ≥ 0.01 
- Layer3Thick ≥ 0.01 

- Point attractors:  Population limit changed to 1000 
- [Cost = 250, Freq = 185, L = 3.000, b = 0.350, 

Layer2Thick = 0.010, Layer3Thick = 0.010] 
- [Cost = 346, Freq = 250, L = 3.000, b = 0.350, 

Layer2Thick = 0.010, Layer3Thick = 0.010] 
- [Cost = 387, Freq = 280, L = 3.000, b = 0.350, 

Layer2Thick = 0.010, Layer3Thick = 0.010] 
- [Cost = 422, Freq = 305, L = 3.000, b = 0.350, 

Layer2Thick = 0.010, Layer3Thick = 0.010] 
- [Cost = 446, Freq = 335, L = 3.000, b = 0.350, 

Layer2Thick = 0.010, Layer3Thick = 0.010] 
- [Cost = 472, Freq = 364, L = 3.000, b = 0.350, 

Layer2Thick = 0.010, Layer3Thick = 0.010] 
- [Cost = 491, Freq = 382, L = 3.000, b = 0.350, 

Layer2Thick = 0.010, Layer3Thick = 0.010] 
- [Cost = 526, Freq = 422, L = 3.000, b = 0.350, 

Layer2Thick = 0.010, Layer3Thick = 0.010] 
- [Cost = 580, Freq = 448, L = 3.000, b = 0.350] 
- [Cost = 625, Freq = 469, L = 3.000, b = 0.350, 

Layer2Thick = 0.030, Layer3Thick = 0.030] 
- [Cost = 667, Freq = 469, L = 3.000, b = 0.350, 

Layer2Thick = 0.030, Layer3Thick = 0.030] 
- [Cost = 687, Freq = 477, L = 3.000, b = 0.350, 

Layer2Thick = 0.030, Layer3Thick = 0.030] 
- [Cost = 695, Freq = 471, L = 3.000, b = 0.350] 

- Basic sampler:  1500 runs 
- Basic sampler: 

- L:  3.0 – 3.0 (every run) 
- B:  0.35 – 0.35 (every run) 

- Basic sampler:  250 runs 
- d1:  0.05 – 0.08 (shifted up by 0.03 

after each run) 
- d2:  0.10 – 0.13 (0.11 – 0.15 on 2nd 

run, shifted up by 0.03 after each 
run, 0.23 – 0.29 on 7th run, shifted 
up by 0.03 after each run)  

- d3:  0.20 – 0.23 (0.20 – 0.25 on 6th 
run, 0.23 – 0.30 on 7th run, shifted 
up by 0.03 after each run) 

- Basic sampler:  500 runs 
- d1:  0.26 – 0.29 (shifted up by 0.03 

after each run until upper limit is 
reached) 

- d2:  0.26 – 0.31 (shifted up by 0.03 
after each run until upper limit is 
reached)  

- d3:  0.26 – 0.33 (shifted up by 0.03 
after each run until upper limit is 
reached) 

- Basic sampler:  1000 runs 
- d1:  0.47 – 0.50 
- d2:  0.47 – 0.55 
- d3:  0.55 – 0.60 

- Basic sampler:  750 runs 
- d1:  0.20 – 0.23 
- d2:  0.20 – 0.25 
- d3:  0.20 – 0.27 

- Brush and preference controls:  Maximize 
(100) Freq, Minimize (-100) Cost, Mass ≤ 
2800, Layer2Thick ≥ 0.01, Layer3Thick ≥ 0.01 

Trial 8 (Total Points:  10,850) Trial 9 (Total Points:  10,000)
- Basic sampler:   500 runs 
- Generation size changed to 50 for everything 
- Brush and preference controls:  Maximize (100) Freq, 
Minimize (-100) Cost, Mass ≤ 2800, Layer2Thick ≥ 
0.01, Layer3Thick ≥ 0.01 
- Point attractors:  Population limit changed to 1000 

- [L = 3.000, b = 0.350, Layer2Thick = 0.010, 
Layer3Thick = 0.010] (10X) 

- [Cost = 343, Freq = 262, L = 3.000, b = 0.350, 
Layer2Thick = 0.010, Layer3Thick = 0.010] 

- Basic sampler:  1000 runs 
- L:  3.0 – 3.0 
- B:  0.35 – 0.35 
- d1:  0.47 – 0.50 
- d2:  0.47 – 0.55 
- d3:  0.55 – 0.60 

- Basic sampler:  10000 runs 
- Brush and preference controls: 

- Mass ≤ 2800 
- Layer2Thick ≥ 0.01 
- Layer3Thick ≥ 0.01 

Trial 7 (Total Points:  10,050) 
- Preference controls:  Maximize (100) Freq, Minimize (-100) Cost 
- Pareto sampler:  Generation size changed to 50, population limit changed to 10,000 
- Brush and preference controls:  Mass ≤ 2800, Layer2Thick ≥ 0.01, Layer3Thick ≥ 0.01 
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 (a) Trial 3 v1 Pareto Frontier (b) Trial 3 v2 Pareto Frontier 

 
(c) Trial 3 v3 Pareto Frontier 

Figure 9.  Example of Results, Sandwich Beam Design Problem Trial 3 

   
 (a) Trial 10 v1 Pareto Frontier (b) Trial 10 v2 Pareto Frontier 

 
(c) Trial 10 v3 Pareto Frontier 

Figure 10.  Example of Results, Sandwich Beam Design Problem Trial 10 
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3.2.2 Settings for Aircraft Wing Design Problem 

The ATSV set-up and parameter settings for all trials for the aircraft wing design problem 

are shown in Figure 11.  Table 6 and Table 7 describe the specific combination of visual 

steering commands and brush/preference controls used for Trials 1-5 and Trials 6-10, 

respectively.  Like the sandwich beam problem, unless otherwise specified in the trial 

description, settings are left at the default values seen in Figure 8c.  In these trials, most 

attractors are placed with the goal of achieving feasible points, pulling the frontier further 

out, and filling gaps in the frontier.  Unlike the sandwich beam problem, the Pareto points 

of this problem varied widely in their input values and the same basic sampling strategy 

could not be used.  Figure 12 shows the Pareto frontiers obtained by all three versions of 

Trial 5 while Figure 13 shows the Pareto frontiers obtained by all three versions of Trial 

6, again, showing that all three versions of a trial result in similar Pareto frontiers. 

   
 (a) Basic Sampler (b) Preferences for Pareto Sampler 

 
(c) Preference Control Settings 

Figure 11.  ATSV Set-up for the Aircraft Wing Design Problem Trials 
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Table 6.  Specification of Visual Steering Commands for the Aircraft Wing Design 
Problem Trials 1-5 

Trial 1 (Total Points:  5,379) Trial 2 (Total Points:  5,100)
- Basic sampler:  100 runs 
- Generation size changed to 60 for everything 
- Brush and preference controls:  Maximize (100) Range ≥ 
0.589, BuffetAltitude (50) ≥ 0.603, Minimize (-33) TOFL ≤ 0.377, 
Minimize (-33) Cost 
- Preference Sampler:  Population limit changed to 600 
- Brush and preference controls:  BuffetAltitude (0), TOFL (-
100), Cost (-100) 
- Point attractors:  Population limit changed to 600 

- [Cost = 0.582, Range = 0.804, TOFL = 0.243]  
- [Cost = 0.439, Range = 0.770, TOFL = 0.319]  
- [Cost = 0.631, Range = 0.746, TOFL = 0.190] 
- [Cost = 0.690, Range = 0.825, TOFL = 0.263] 
- [Cost = 0.571, Range = 0.823, TOFL = 0.323] 
- [Cost = 0.512, Range = 0.747, TOFL = 0.210] 
- [Cost = 0.524, Range = 0.710, TOFL = 0.162] 
- [Cost = 0.363, Range = 0.697, TOFL = 0.307] 

- Preference controls: 
- Maximize Range 
- Minimize TOFL 
- Minimize Cost 

- Pareto sampler:  Generation size 
changed to 60, population limit 
changed to 5,000 
- Brush and preference controls: 

- Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

Trial 3 (Total Points:  5,109) Trial 4 (Total Points:  5,000)
- Basic sampler:  250 runs 
- Generation size changed to 60 for everything 
- Brush and preference controls:  Maximize (100) Range ≥ 
0.589, BuffetAltitude ≥ 0.603, Minimize (-100) TOFL ≤ 0.377, 
Minimize (-100) Cost 
- Pareto sampler:  Population limit changed to 600 
- Point attractors:  Population limit changed to 600 

- [Span = 1150, Cost = 0.578, Range = 0.832, TOFL = 
0.227, BuffetAltitude = 0.810]  

- [Span = 1150, Cost = 0.435, Range = 0.779, TOFL = 
0.278, BuffetAltitude = 0.620]  

- [Span = 1150, Cost = 0.687, Range = 0.791, TOFL = 
0.197, BuffetAltitude = 0.925]  

- [Span = 1150, Cost = 0.510, Range = 0.719, TOFL = 
0.190, BuffetAltitude = 0.805]  

- [Span = 1150, Cost = 0.532, Range = 0.764, TOFL = 
0.267, BuffetAltitude = 0.805]  

- [Span = 1150, Cost = 0.741, Range = 0.837, TOFL = 
0.305, BuffetAltitude = 0.962]  

- [Span = 1150, Cost = 0.537, Range = 0.625, TOFL = 
0.102, BuffetAltitude = 0.916]  

- Basic sampler:  5000 runs 
- Brush and preference controls: 

- Maximize (100) Range ≥ 
0.589 

- BuffetAltitude ≥ 0.603 
- Minimize (-100) TOFL ≤ 

0.377 
- Minimize (-100) Cost 

 

Trial 5 (Total Points:  5,290) 
- Basic sampler:  250 runs 
- Generation size changed to 60 for everything 
- Brush and preference controls:  Maximize (100) Range ≥ 0.589, BuffetAltitude ≥ 0.603, Minimize (-
100) TOFL ≤ 0.377, Minimize (-100) Cost 
- Pareto sampler:  Population limit changed to 600 
- Point attractors:  Population limit changed to 600 

- [Cost = 0.715, Range = 0.853, TOFL = 0.321, BuffetAltitude = 0.908] 
- [Cost = 0.364, Range = 0.719, TOFL = 0.287, BuffetAltitude = 0.700] 

- Point attractors:  Population limit changed to 1000 
- [Cost = 0.556, Range = 0.674, TOFL = 0.102, BuffetAltitude = 0.879] 
- [Cost = 0.488, Range = 0.763, TOFL = 0.270, BuffetAltitude = 0.785] 

- Point attractors:  Population limit changed to 600 
- [Cost = 0.624, Range = 0.776, TOFL = 0.270, BuffetAltitude = 0.928] 
- [Cost = 0.437, Range = 0.688, TOFL = 0.187, BuffetAltitude = 0.802] 

24 



 

Table 7.  Specification of Visual Steering Commands for the Aircraft Wing Design 
Problem Trials 6-10 

Trial 6 (Total Points:  10,345) Trial 7 (Total Points:  
10,105) 

- Basic sampler:  100 runs 
- Generation size changed to 60 and Population limit changed to 1000 for 
everything 
- Brush and preference controls:  Maximize (100) Range ≥ 0.589, 
BuffetAltitude ≥ 0.603, Minimize (-100) TOFL ≤ 0.377, Minimize (-100) Cost 
- Point attractors: 

- [Cost = 0.511, Range = 0.765, TOFL = 0.290]  
- [Cost = 0.657, Range = 0.786, TOFL = 0.217]  
- [Cost = 0.566, Range = 0.753, TOFL = 0.213]  
- [Cost = 0.420, Range = 0.703, TOFL = 0.255]  
- [Cost = 0.707, Range = 0.721, TOFL = 0.149]  
- [Cost = 0.627, Range = 0.823, TOFL = 0.289]  
- [Cost = 0.403, Range = 0.724, TOFL = 0.312]  
- [Cost = 0.480, Range = 0.746, TOFL = 0.255]  
- [Cost = 0.587, Range = 0.816, TOFL = 0.315]  
- [Cost = 0.525, Range = 0.704, TOFL = 0.180]  
- [Cost = 0.707, Range = 0.840, TOFL = 0.313]  

- Preference controls: 
- Maximize Range 
- Minimize TOFL 
- Minimize Cost 
- Pareto sampler:  
Generation size 
changed to 60, 
population limit 
changed to 10,000 
- Brush and preference 
controls:   
- Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

Trial 8 (Total Points:  10,520) Trial 9 (Total Points:  
10,000) 

- Basic sampler:  500 runs 
- Generation size changed to 60 for everything 
- Brush and preference controls:  Maximize (100) Range ≥ 0.589, 
BuffetAltitude (50) ≥ 0.603, Minimize (-33) TOFL ≤ 0.377, Minimize (-33) Cost 
- Preference Sampler:  Population limit changed to 1000 
- Brush and preference controls:  BuffetAltitude (0), TOFL (-100), Cost (-100) 
- Pareto sampler:  Population limit changed to 1000 
- Point attractors:  Population limit changed to 1000 

- [Cost = 0.726, Range = 0.886, TOFL = 0.316, BuffetAltitude = 0.900] 
- [Cost = 0.598, Range = 0.689, TOFL = 0.115, BuffetAltitude = 0.900] 
- [Cost = 0.701, Range = 0.770, TOFL = 0.177, BuffetAltitude = 0.922] 
- [Cost = 0.450, Range = 0.736, TOFL = 0.253, BuffetAltitude = 0.713] 
- [Cost = 0.559, Range = 0.798, TOFL = 0.278, BuffetAltitude = 0.803] 
- [Cost = 0.546, Range = 0.716, TOFL = 0.184, BuffetAltitude = 0.788] 
- [Cost = 0.372, Range = 0.709, TOFL = 0.320, BuffetAltitude = 0.610] 
- [Cost = 0.475, Range = 0.764, TOFL = 0.330, BuffetAltitude = 0.610] 
- [Cost = 0.591, Range = 0.839, TOFL = 0.333, BuffetAltitude = 0.806] 
- [Cost = 0.520, Range = 0.784, TOFL = 0.282, BuffetAltitude = 0.806] 

- Basic sampler:  
10000 runs 
- Brush and preference 
controls: 
- Maximize (100) 
Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- Minimize (-100) TOFL 
≤ 0.377 
- Minimize (-100) Cost 
 

Trial 10 (Total Points:  10,340) 
- Basic sampler:  500 runs 
- Generation size changed to 60 for everything 
- Brush and preference controls:  Maximize (100) Range ≥ 0.589, BuffetAltitude ≥ 0.603, Minimize (-
100) TOFL ≤ 0.377, Minimize (-100) Cost 
- Pareto sampler:  Population limit changed to 1200 
- Point attractors:  Population limit changed to 1200 

- [Cost = 0.727, Range = 0.883, TOFL = 0.327] 
- [Cost = 0.545, Range = 0.649, TOFL = 0.111] 

- Pareto sampler:  Population limit changed to 1200 
- Point attractors:  Population limit changed to 1200 

- [Cost = 0.385, Range = 0.749, TOFL = 0.341] 
- [Cost = 0.440, Range = 0.722, TOFL = 0.232] 

- Pareto sampler:  Population limit changed to 1200 
- Point attractors:  Population limit changed to 1200 

- [Cost = 0.605, Range = 0.758, TOFL = 0.207] 
- [Cost = 0.622, Range = 0.847, TOFL = 0.304] 
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 (a) Trial 5 v1 Pareto Frontier (b) Trial 5 v2 Pareto Frontier 

 
(c) Trial 5 v3 Pareto Frontier 

Figure 12.  Example of Results, Aircraft Wing Design Problem Trial 5 

  
 (a) Trial 6 v1 Pareto Frontier (b) Trial 6 v2 Pareto Frontier 

 
(c) Trial 6 v3 Pareto Frontier 

Figure 13.  Example of Results, Aircraft Wing Design Problem Trial 6 
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3.2.3 Settings for Vehicle Configuration Design Problem 

The ATSV set-up and parameter settings for Trials 1-5 for the vehicle configuration 

model are shown in Figure 14.  Table 8 describes the specific combination of visual 

steering commands and brush/preference controls used for Trials 1-5.  As with the other 

test problems, unless otherwise specified, the default option values are used (see Figure 

8c).  Figure 15 shows the Pareto frontiers obtained by all three versions of Trial 4. 

   
 (a) Basic Sampler (b) Preferences for Pareto Sampler  

 
  (c) Preference Control Settings 

Figure 14.  ATSV Set-up for VCM Trials 1-5 
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 (a) Trial 4 v1 Pareto Frontier (b) Trial 4 v2 Pareto Frontier  

  
(c) Trial 4 v3 Pareto Frontier 

Figure 15.  Example of Results, VCM Trial 4 
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Table 8.  Specification of Visual Steering Commands for VCM Trials 1-5 
Trial 1 (Total Points: 5,025) Trial 2 (Total Points: 5,075) 

- Basic Sampler:  100 runs 
- Brush objectives 1-5:  Minimize objective 1 (-

100), maximize objectives 2-5 (100) 
- Point attractors:  10 possible pair-wise point 

attractors for objectives 1-5 set at the current 
limits of the scatter plot window (on objectives 
[1 & 2], [3 & 4], [5 & 1], [2 & 3], [4 & 5], [1 & 3], 
[2 & 4], [3 & 5], [4 & 1], [5 & 2]) 

- Pareto Sampler 
 

- Basic Sampler:  500 runs 
- Brush objectives 1-5:  Minimize objective 1 (-

100), maximize objectives 2-5 (100) 
- Pareto Sampler 
- Line attractors (1-d point attractor):  One for 

each objective 1-5 set at the current limit of 
the scatter plot window (minimum of window 
for objective 1 and maximum of window for 
objectives 2-5) 

- Preference Sampler 
- Point attractors:  Set at the current limits of 

the scatter plot window (on objectives [2 & 5], 
[2 & 4])  

- Point attractors:  Set at the current limits of 
the scatter plot window, generation size 
changed to 15 (on objectives [3 & 2], [3 & 4], 
[1 & 5], [2 & 5]) 

- Point attractor:  Set at the current limits of the 
scatter plot window (on objectives [3 & 5])  

Trial 3 (Total Points: 5,525) Trial 4 (Total Points: 5,375) 
- Basic Sampler:  500 runs 
- Brush objectives 1-5:  Minimize objective 1 (-

100), maximize objectives 2-5 (100) 
- Point attractors:   Set at the current limits of 

the glyph plot window (on objectives [1, 2, & 
3], [1, 2, & 4], [1, 2, & 5], [1, 3, & 4], [1, 3, & 5], 
[1, 4, & 5], [2, 3, & 4], [2, 3, & 5], [2, 4, & 5], [3, 
4, & 5]) 

- Pareto Sampler  
 

 

- Basic Sampler:  100 runs 
- Brush objectives 1-5:  Minimize objective 1 (-

100), maximize objectives 2-5 (100) 
- Line attractors (1-d point attractors):  Set at 

the current limits of the scatter plot window 
(on objectives 1–5) 

- Pareto Sampler 
- Point attractors:  Set at the current limits of 

the scatter plot window, generation size 
changed to 15 and population limit changed to 
250 (on objectives [1 & 2], [1 & 3], [1 & 4], [1 
& 5], [2 & 3], [2 & 4], [2 & 5], [3 & 4], [3 & 5], [4 
& 5]) 

- Line attractor (1-d point attractor):   On 
objective 3 set at the current limit of the 
scatter plot window 

- Point attractors:  Set at the current limits of 
the scatter plot window (on objectives [3 & 4], 
[4 & 5]) 

Trial 5 (Total Points: 5,000) 
- Basic Sampler:  5,000 runs 
- Brush objectives 1-5:  Minimize objective 1 (-100), maximize objectives 2-5 (100) 
 

 

The second set of five trials (Trials 6-10) for the vehicle configuration model use 

approximately 10,000 points each, doubling the number of function evaluations allocated.  

These trials, with the exception of Trial 10, all begin with a small set of random samples 

to allow the user to specify preferences (see Figure 16), but they then vary widely in the 

order and type of attractors and samplers used.  Table 9 describes the preference settings 
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and specific combination of visual steering commands that are used for Trials 6-10.  Note 

that these trials also set a preference on ConVio to minimize it before generating too 

many points, with the exception of Trial 5, which sets it halfway through the trial.  Unless 

specified, the same options and parameter settings are used for these trials as Trials 1-5 

(see Figure 8c).  Figure 17 shows an example of the Pareto frontiers from all three 

versions of Trial 6. 

  
 (a) Preferences for Pareto Sampler (b) Preference Control Settings 

Figure 16.  ATSV Set-up for VCM Trials 6-10 
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Table 9.  Specification of Visual Steering Commands for VCM Trials 6-10 
Trial 6 (Total Points: 10,325) Trial 7 (Total Points: 10,075) 

- Basic Sampler:  100 runs 
- Brush objectives 1-5:  Minimize objective 1 (-

100), maximize objectives 2-5 (100) 
- Point attractors:  Set at the current limits of 

the scatter plot window ± 5% for minimizing or 
maximizing, respectively (on objectives [1 & 
2], [2 & 3], [3 & 4], [4 & 5], [5 & 1], [1 & 3], [3 & 
5], [5 & 2], [2 & 4], [4 & 1]) 

- Preference Sampler 
- Point attractors:  These specific values were 

used to fill in the Pareto frontier ([Obj1 = 0.9, 
Obj2 = 1.102], [Obj1 = 0.645, Obj2 = .872], 
[Obj2 = 1.144, Obj3 = .988]) 

- Line attractors (1-d point attractors):  These 
specific values were used to fill in the Pareto 
frontier ([Obj4 = 1.124], [Obj5 = 1.191]) 

- Brush (preference):  Minimize ConVio (-100) 
- Preference Sampler 
- Pareto Sampler 
- Line attractors (1-d point attractors):  One for 

each objective 1-5 set at the feasible limit of 
the objective in the scatter window (minimum 
for objective 1 and maximum for objectives 2-
5) 

- Pareto Sampler 

- Basic Sampler:  250 runs 
- Brush objectives 1-5 and ConVio:  Minimize 

objective 1 and ConVio (-100), maximize 
objectives 2-5 (100) 

- Preference Sampler:  Generation size 
changed to 50 and population limit changed 
to 1,000 

- Pareto Sampler:  Generation size changed to 
50 and population limit changed to 1,000 

- Point attractors:  Set at the current limits of 
the scatter plot window (on [ConVio & Obj1], 
[ConVio & Obj2], [ConVio & Obj3], [ConVio & 
Obj4], [ConVio & Obj5]) 

- Pareto Sampler  Generation size changed to 
50 and population limit changed to 1,000 

- Point attractors:  These specific values were 
used to fill in the Pareto frontier              
([ConVio = 0, Obj1 = 1.043, Obj2 = 1.2], 
[ConVio = 0, Obj1 = .755, Obj3 = 1.026], 
[ConVio = 0, Obj1 = .911, Obj4 = 1.121], 
[ConVio = 0, Obj1 = .729, Obj2 = 1.153], 
[ConVio = 0, Obj2 = 1.126, Obj3 = .993], 
[ConVio = 0, Obj2 = 1.186, Obj4 = 1.099], 
[ConVio = 0, Obj2 = 1.154, Obj5 = 1.052], 
[ConVio = 0, Obj3 = 1.018, Obj4 = 1.123], 
[ConVio = 0, Obj3 = 1.003, Obj5 = 1.137], 
[ConVio = 0, Obj4 = 1.121, Obj5 = 1.105], 
[ConVio = 0, Obj3 = .923, Obj5 = .993], 
[ConVio = 0, Obj2 = 1.207, Obj5 = .853]) 

- Preference Sampler 
- Pareto Sampler 
- Point attractors:  ([Obj1 = .802, Obj2 = .851, 

Obj3 = 1.007], [Obj3 = 1.003, Obj2 = .854],       
[Obj1 = 1.073, Obj2 = 1.19],                      
[Obj4 = .995, Obj5 = .824],                        
[Obj3 = .955, Obj4 = 1.119]) 

- Pareto Sampler:  Population limit changed to 
250 

Trial 8 (Total Points: 10,125) Trial 9 (Total Points: 10,275) 
- Basic Sampler:  25 runs 
- Brush objectives 1-5 and ConVio:  Minimize 

objective 1 and ConVio (-100), maximize 
objectives 2-5 (100) 

- Pareto Sampler:  Generation size changed to 
50 and population limit changed to 1,000 

- Preference Sampler:  Generation size 
changed to 50 and population limit changed 
to 1,000 

- Repeated Pareto and Preference Samplers in 
above order with the same settings four more 
times 

- Pareto Sampler:  Generation size changed to 
50 and population limit changed to 1,000 

- Basic Sampler:  25 runs 
- Brush objectives 1-5 and ConVio:  Minimize 

objective 1 and ConVio (-100), maximize 
objectives 2-5 (100) 

- Pareto Sampler:  Generation size changed to 
50, population limit changed to 1,000, and 
selection strategy changed to Rand1Bin 

- Preference Sampler:  Generation size 
changed to 50, population limit changed to 
1,000, and selection strategy changed to 
Rand1Bin 

- Repeated Pareto and Preference Samplers in 
above order with the same settings four more 
times 

Trial 10 (Total Points: 10,000) 
- Basic Sampler:  10,000 runs 
- Brush objectives 1-5:  Minimize objective 1 (-100), maximize objectives 2-5 (100) 
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 (a) Trial 6 v1 Pareto Frontier (b) Trial 6 v2 Pareto Frontier  

 
(c) Trial 6 v3 Pareto Frontier 

Figure 17.  Example of Results, VCM Trial 6 

3.3 Reference Pareto Sets 

For consistency, the reference (or “best known”) Pareto frontier for each problem is 

generated by combining the Pareto fronts from all three versions of every trial in both 

sets of trials into a “super set” and then using ATSV to perform a non-dominated sort of 

this “super set.”  Figure 18 shows the reference Pareto sets for all three test problems. 

 

In addition, for the vehicle configuration design problem, three exhaustive runs of the 

multi-objective genetic algorithm (MOGA) [24] were performed to find the Pareto 

frontier.  In order to ensure the Pareto frontier generated by the exhaustive MOGA 
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contained no large holes or gaps (i.e., covered the entire objective space), a Gap Analyzer 

was used to direct the MOGA to find designs in those areas if such a region was found 

[25].  The exhaustive MOGA used approximately 80,000 function evaluations to create 

its Pareto frontier.  Even with the Gap Analyzer, though, the MOGA ran “blindly”, 

requiring no human intervention while searching the trade space; hence, it provides a 

suitable benchmark for this study.   

  

 (a) Sandwich Beam (b) Aircraft Wing 

 

(c) VCM 

Figure 18.  Test Problem Reference Pareto Frontiers 
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3.4 Performance Metric 

To quantify the performance and compare the results of multi-objective genetic 

algorithms rigorously, a variety of performance metrics have been developed [28].  

Okabe, et al. [29] states that these metrics should be used to assess (1) the number of 

Pareto-optimal solutions in the set, (2) the closeness of the solutions to the theoretical 

Pareto-front, and (3) the distribution and spread of the solutions.  Zitzler [30] proposed a 

hyper-volume metric, which evaluates the size of the dominated space.  Reed and Tang 

[31] have developed and refined performance metrics to evaluate two Pareto frontiers in a 

5-D trade space.  In particular, ε-performance has been used to assess the performance of 

multi-objective genetic algorithms due to its relative computational efficiency, accuracy, 

and ease-of-use.  Since only relative performances of the trials are needed, the ε-

performance metric developed by Kollat and Reed [32,33] was selected as the basis for 

comparison. 

 

This ε-performance metric assesses the proportion of solutions that were found within a 

user-specified level of precision relative to the “true” Pareto frontier, or best available 

reference set.  In other words, the user can specify a precision level for each objective to 

tailor it to a given application.  The solutions are then evaluated with respect to the 

reference set based on this user specified precision.  The proportion (percentage) of 

solutions in the reference set that are found by the genetic algorithm within this level of 

precision is reported as its ε-performance.  Since the solutions are evaluated with respect 

to a best known reference Pareto set, it is possible that the solutions may at times 

dominate reference set solutions.  To account for this, ε-performance is reported as the 

34 



 

proportion of reference set solutions that are dominated, or found within the user-

specified ε precision.  These metrics allow for numerical comparison between the 

solutions generated using the different combinations of visual steering commands within 

ATSV and the reference Pareto frontiers. 

 

Before comparing the sets of solutions quantitatively using the ε-performance metric, a 

suitable value for epsilon needs to be determined.  After confirming that all output 

variables are normalized by the same ranges (VCM and aircraft wing problem) the 

differences between the objectives of every pair of designs in the reference sets are 

computed.  It is found that the smallest difference between any two designs is so close to 

zero that any reasonable value of epsilon could be selected.  While choosing an epsilon 

value that is too large would reduce each set to the point that comparison would be 

meaningless, choosing an epsilon value that is too small would make it almost impossible 

to find designs within one epsilon of each other in each objective, especially in the VCM 

case given that it is a 5-D space.  In addition, since the goal is to compare the relative 

performances of the different trials to one another, an epsilon value needs to be chosen 

that ensures that the reduced sets are still representative of the originals.  Therefore, a 

value of 0.01 is selected for this analysis and used for each of the objectives (VCM and 

wing problem).  The sandwich beam problem is slightly different in that its output values 

are not normalized to range between 0 and 1 or scaled against a baseline value; therefore 

the corresponding value of epsilon for Cost and Frequency of 0.01 is 3.2 for Frequency 

and 5.1 for Cost.  The results of this numerical comparison follow next in Chapter 4. 
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CHAPTER 4 

ANALYSIS AND DISCUSSION OF RESULTS 

4.1 Results for Sandwich Beam Design Problem 

Figure 19 provides a visual comparison of the resulting Pareto frontiers from two 

representative trials along with the reference set for the sandwich beam design problem.  

Because this problem has only two objectives, the similarities in the Pareto fronts can be 

easily seen, particularly between Trial 10 v2 and the reference set.  To show this even 

more clearly, Figure 20 shows all three of these fronts plotted together.  While Trial 10 

v2’s Pareto frontier is not as complete as the reference set, it spans the entire length of the 

reference set and appears to be in close agreement.  Despite having a relatively low ε-

performance as shown by Table 10 (detailed ε-performance results of sandwich beam 

Trials 1-5) and Table 11 (average ε-performance results of sandwich beam Trials 1-5), 

Trial 3 v1 appears to be a good approximation to the reference Pareto set at least along 

the straight segment of the frontier.  Trial 10 v2 on the other hand, does have a very high 

ε-performance as shown by Table 12 and Table 13, detailed and average ε-performance 

results of Trials 6-10, respectively. 
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 (a) Trial 3 v1 (b) Trial 10 v2 

 

 (c) Reference 

Figure 19.  Example of Visual Comparisons of Resulting Pareto Frontiers from 
Sandwich Beam Design Problem Trials  
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Figure 20.  Sandwich Beam Design Problem Reference Pareto Front (Blue), Trial 10 
v2 Pareto Front (Green), Trial 3 v1 Pareto Front (Red) 

Table 10.  ε-performance Results Trials 1-5 – Sandwich Beam 
5,000 Point Trials 

  Trial 1 Trial 2 Trial 3 
# Func. 
Evals v1 v2 v3 v1 v2 v3 v1 v2 v3 

  % Within ε % Within ε % Within ε 
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.225 2.817 
3000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.225 2.817 
4000 0.000 0.000 0.000 0.000 0.000 0.000 2.817 5.634 2.817 
5000 0.000 1.408 0.000 0.000 0.000 0.000 5.634 5.634 2.817 

  
  Trial 4 Trial 5     

# Func. 
Evals v1 v2 v3 v1 v2 v3     

  % Within ε % Within ε     
500 0.000 0.000 0.000 0.000 0.000 0.000     

1000 0.000 0.000 0.000 0.000 0.000 0.000     
2000 0.000 0.000 0.000 0.000 0.000 0.000     
3000 0.000 0.000 0.000 0.000 0.000 0.000     
4000 0.000 0.000 0.000 0.000 0.000 0.000     
5000 0.000 0.000 0.000 0.000 0.000 1.408       
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Table 11.  Average ε-performance Results Trials 1-5 – Sandwich Beam 
5,000 Point Trial Averages 

# Func. 
Evals Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

  % Within ε 
500 0.000 0.000 0.000 0.000 0.000 

1000 0.000 0.000 0.000 0.000 0.000 
2000 0.000 0.000 2.347 0.000 0.000 
3000 0.000 0.000 2.347 0.000 0.000 
4000 0.000 0.000 3.756 0.000 0.000 
5000 0.469 0.000 4.695 0.000 0.469 

Table 12.  ε-performance Results Trials 6-10 – Sandwich Beam 

10,000 Point Trials 

  Trial 6 Trial 7 Trial 8 
# Func. 
Evals v1 v2 v3 v1 v2 v3 v1 v2 v3 

  % Within ε % Within ε % Within ε 
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2500 0.000 1.408 4.225 0.000 0.000 0.000 0.000 2.817 1.408 
5000 2.817 1.408 4.225 0.000 0.000 0.000 0.000 4.225 5.634 
7500 2.817 1.408 8.451 0.000 0.000 0.000 11.268 5.634 5.634 

10000 2.817 1.408 8.451 0.000 0.000 0.000 19.718 12.676 8.451 
  

  Trial 9 Trial 10     
# Func. 
Evals v1 v2 v3 v1 v2 v3     

0 % Within ε % Within ε     
500 0.000 0.000 0.000 0.000 0.000 0.000     

1000 0.000 0.000 0.000 0.000 0.000 0.000     
2500 0.000 0.000 0.000 9.859 0.000 0.000     
5000 0.000 0.000 0.000 19.718 9.859 16.901     
7500 0.000 0.000 0.000 30.986 28.169 32.394     

10000 0.000 0.000 0.000 38.028 40.845 38.028       

Table 13.  Average ε-performance Results Trials 6-10 – Sandwich Beam 
10,000 Point Trial Averages 

# Func. 
Evals Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

  % Within ε 
500 0.000 0.000 0.000 0.000 0.000 

1000 0.000 0.000 0.000 0.000 0.000 
2500 1.878 0.000 1.408 0.000 3.286 
5000 2.817 0.000 3.286 0.000 15.493 
7500 4.225 0.000 7.512 0.000 30.516 

10000 4.225 0.000 13.615 0.000 38.967 
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An interesting and at first somewhat surprising point to note, as shown by Table 10, 

Table 11, Table 12, and Table 13, is that Trials 2 and 4 and Trials 7 and 9 each did not 

find any of the reference Pareto set.  While it was expected to be shown that the user-

guided trials would outperform the “blindly” searching automated trials, it is unexpected 

that the Pareto sampler only and unguided basic sampler only trials would not find any 

part of the reference Pareto frontier.  However, inspection of the trade space reveals the 

answer; the entire trade space from Trial 7 v1 with the reference Pareto Frontier overlaid 

is shown in Figure 21. 

 

Figure 21.  Trial 7 v1 Entire Trade Space Overlaid with Reference Pareto Frontier 
(Denoted by +), Infeasible Points (Gray), Feasible Points (Red) 

Examining Figure 21 shows how large the trade space is and how most of it contains 

infeasible designs.  During the user-guided trials, the user is able to steer the exploration 

into the relatively small feasible region in the trade space, however, the “blind” trials 

have no way of knowing that they are sampling nothing but infeasible points.  The Pareto 

sampler in this case would be sampling the far left edge of the trade space in an infeasible 

region with no ability to break free.  The unguided basic sampler would rely solely on 
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chance to find points along the Pareto frontier, which is highly unlikely given the size of 

the trade space.  For a sense of scale, the reference Pareto frontier shown in Figure 19 is 

represented in Figure 21 by the black “+” symbols which are so tightly packed together 

given the scale that they are difficult to discern. 

 

Few of the user trials did well, however.  Trial 10 is by far the best performer of the user-

guided trials, and the other 10,000 function evaluation trials did fairly well, but only Trial 

3 of the 5,000 function evaluation trials shows any promise according to Table 10 and 

Table 12.  This shows that not just any combination of steering commands will work; 

they need to be intelligently used so that they are effective and do not rely too heavily 

upon chance to generate points of use. 

 

It is difficult to make generalizations based on this problem due to the wide variety of 

results, but given such a constrained problem, Table 10, Table 12, and Figure 22 show 

that a user-guided trial can significantly outperform a “blind” search in which no 

constraint handling method is applied.  The user can make changes on the fly as the 

exploration process unfolds, whereas the automated search, in this case, cannot.  Figure 

22 gives a way of visualizing the results contained in Table 11 and in Table 13 and gives 

a sense of how quickly the user-guided trials are converging to the reference Pareto 

frontier, while showing that the Pareto sampler only Trials 2 and 7 and unguided basic 

sampler only Trials 4 and 9 found none of the reference set design points over the full 

range of allotted function evaluations. 
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(a) Results from Trials 1-5 
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(b) Results from Trials 6-10  

Figure 22.  Evolution of Pareto Frontiers for the Sandwich Beam Design Problem, 
Trial Average 

4.2 Results for Aircraft Wing Design Problem 

While a visual comparison among Pareto frontiers is not as easily done as with the 

sandwich beam test problem, Figure 23 provides a visual comparison of the resulting 
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Pareto frontiers for the aircraft wing design problem for representative trials along with 

the reference set.  The similar overall shape of the Pareto frontiers is readily apparent, 

and it appears that Trial 6 v2 is closer to the reference set than Trial 5 v1.  This is 

supported by the results shown in Table 14 and Table 15, detailed ε-performance results 

of Trials 1-5 and Trials 6-10, respectively. 

 

 (a) Trial 5 v1 (b) Trial 6 v2 

 

 (c) Reference 

Figure 23.  Example of Visual Comparisons of Resulting Pareto Frontiers 

Whereas the sandwich beam problem only had a few standout trials, every wing trial, 

although not every version, found part of the reference Pareto frontier.  Both of the 

unguided trials in each set had at least some success.  For the 5,000 function evaluation 

trials Table 16 shows the user-guided trials (Trials 1, 3, and 5) found, on average, 1.72% 
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- 4.23% of the reference set, the unguided trials (Trials 2 and 4) found, on average, 0.13% 

- 1.46%.  The 10,000 function evaluation trials, as expected, performed even better.  

Table 17 shows that the user-guided trials found 3.57% - 11.77% of the reference Pareto 

set whereas the unguided trials found 0.53% - 3.57%.  This indicates that, like the 

previous problem showed, not just any combination of visual steering commands will 

perform well, but if done so intelligently, they could produce up to a 22x - 32x increase 

in the number of Pareto points found over random searching and up to a 3x increase in 

the number of Pareto points found compared to an automated sampler. 

Table 14.  ε-performance Results Trials 1-5 – Aircraft Wing 
5,000 Point Trials 

  Trial 1 Trial 2 Trial 3 
# Func. 
Evals v1 v2 v3 v1 v2 v3 v1 v2 v3 

  % Within ε % Within ε % Within ε 
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1000 0.000 0.000 0.000 0.000 0.000 0.000 0.397 0.000 0.000 
2000 1.587 0.000 0.000 0.794 0.000 0.000 0.794 0.000 0.794 
3000 1.587 0.000 0.000 1.587 0.397 0.397 2.381 0.000 1.190 
4000 1.587 0.000 0.397 2.381 0.397 0.397 2.381 0.000 1.984 
5000 3.571 0.397 2.381 2.778 1.190 0.397 2.778 0.000 2.381 

  
  Trial 4 Trial 5     

# Func. 
Evals v1 v2 v3 v1 v2 v3     

  % Within ε % Within ε     
500 0.000 0.000 0.000 0.000 0.000 0.000     

1000 0.000 0.000 0.000 0.000 0.000 0.000     
2000 0.000 0.000 0.000 1.587 0.000 0.794     
3000 0.000 0.000 0.000 2.778 0.000 1.984     
4000 0.000 0.000 0.397 3.968 1.587 1.984     
5000 0.000 0.000 0.397 6.349 2.381 3.968       
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Table 15.  ε-performance Results Trials 6-10 – Aircraft Wing 
10,000 Point Trials 

  Trial 6 Trial 7 Trial 8 
# Func. 
Evals v1 v2 v3 v1 v2 v3 v1 v2 v3 

  % Within ε % Within ε % Within ε 
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1000 0.397 1.984 0.000 0.000 0.000 0.000 0.794 0.000 0.397 
2500 1.190 2.381 1.190 0.397 0.000 0.000 5.159 0.397 1.190 
5000 6.349 4.365 6.746 0.397 0.794 3.968 6.746 0.397 3.175 
7500 11.508 9.127 8.333 0.794 1.587 6.349 7.143 5.556 6.349 

10000 11.905 12.302 11.111 1.587 1.587 7.540 13.492 8.333 10.318 
  

  Trial 9 Trial 10     
# Func. 
Evals v1 v2 v3 v1 v2 v3     

0 % Within ε % Within ε     
500 0.000 0.000 0.000 0.000 0.000 0.000     

1000 0.000 0.000 0.000 0.000 0.397 0.000     
2500 0.000 0.000 0.000 0.397 0.794 0.000     
5000 0.000 0.397 0.000 1.190 1.190 1.190     
7500 0.000 1.190 0.397 3.571 2.778 1.190     

10000 0.000 1.190 0.397 3.968 4.365 2.381       

Table 16.  Average ε-performance Results Trials 1-5 – Aircraft Wing 
5,000 Point Trial Averages 

# Func. 
Evals Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

  % Within ε 
500 0.000 0.000 0.000 0.000 0.000 

1000 0.000 0.000 0.132 0.000 0.000 
2000 0.529 0.265 0.529 0.000 0.794 
3000 0.529 0.794 1.190 0.000 1.587 
4000 0.661 1.058 1.455 0.132 2.513 
5000 2.116 1.455 1.720 0.132 4.233 

Table 17.  Average ε-performance Results Trials 6-10 – Aircraft Wing 
10,000 Point Trial Averages 

# Func. 
Evals Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

  % Within ε 
500 0.000 0.000 0.000 0.000 0.000 

1000 0.794 0.000 0.397 0.000 0.132 
2500 1.587 0.132 2.249 0.000 0.397 
5000 5.820 1.720 3.439 0.132 1.190 
7500 9.656 2.910 6.349 0.529 2.513 

10000 11.773 3.571 10.714 0.529 3.571 
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Figure 25 gives a visual representation of the results in Table 16 and Table 17.  It shows 

that the increase is generally present during the full course of the allotted number of 

function evaluations, with Trial 10 performing nearly identical to Trial 7, and Trial 1 

alternating with Trial 2.  The trials that performed considerably better than the automated 

trials did so during the whole course of the trials.  It is also very clear that all user-guided 

trials outperformed the unguided basic sampler trials.  It should also be pointed out that 

the automated trials suffer from a similar problem to that seen in the sandwich beam 

problem trials, namely, a large portion of the trade space is actually infeasible as seen in 

Figure 24. 

  

(a) Feasible (Colored) Pareto Front, Infeasible points (Gray) (b) Combined Pareto Front 

Figure 24.  Feasible vs. Infeasible Trade Space (Pareto Points Denoted by +) 

The Pareto sampler would be attempting to advance the entire frontier (Figure 24b) while 

the desired frontier is only a small portion (Figure 24a).  This again, shows the strength of 

the user-guided trials.  The user can adapt the steering commands to focus in on only the 

feasible region of interest. 
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(a) Results from Trials 1-5 
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(b) Results from Trials 6-10  

Figure 25.  Evolution of Pareto Frontiers for the Aircraft Wing Design Problem, 
Trial Average 
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4.3 Results for Vehicle Configuration Design Problem 

Figure 26 provides a visual comparison of the resulting Pareto frontiers of representative 

trials along with the reference set for the VCM problem.  While it is difficult to make 

comparisons in 5-D, it can seen that all three plots share similar characteristics. 

  

 (a) Trial 4 v1 (b) Trial 6 v2 

 

 (c) Reference 

Figure 26.  Example of Visual Comparisons of Resulting VCM Pareto Frontiers 

Table 18 summarizes the detailed results of each trial using the ε-performance metric for 

the 5,000 function evaluation trials and the MOGA (up to 5,000 function evaluations) 

while Table 19 lists the averages of the three versions.  As discussed in Chapter 3.4, the 

reported results are obtained by comparing each trial’s resulting Pareto front from each 
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version to the reference set obtained from combining all fronts, which is the best 

approximation of the “true” Pareto frontier that can be obtained.  Not surprisingly, the 

percentage of designs found within epsilon of the reference solutions is very low for 

every trial.  This is likely a result of the objective space being 5-D, which makes it very 

difficult to find two designs that fall within 0.01 of each other in all five objectives.  

However, as stated before, if the epsilon value is increased, it makes comparisons 

meaningless because every set is substantially reduced; an example is shown in Table 20.  

It can be seen that when using only 5,000 points, the user trials are able to obtain on 

average 0.41% - 1.70% of the reference set whereas the automated, “blindly” searching 

Trial 5 and MOGA, only found 0.26% - 0.36% of the reference set, on average.  From 

Table 19 it can be seen that the user trials were able to find up to nearly 5x as many 

Pareto points as the MOGA (1.70% compared to 0.36%) and 7x as many as a random 

search.  
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Table 18.  ε-performance Results Trials 1-5 and MOGA – VCM 
5,000 Point Trials 

  Trial 1 Trial 2 Trial 3 
# Func. 
Evals v1 v2 v3 v1 v2 v3 v1 v2 v3 

  % Within ε % Within ε % Within ε 
500 0.000 0.000 0.155 0.155 0.000 0.155 0.000 0.155 0.000 

1000 0.000 0.155 0.309 0.155 0.000 0.464 0.000 0.309 0.000 
2000 0.309 0.309 0.464 0.155 0.464 0.618 0.000 0.618 0.155 
3000 1.391 0.464 0.618 0.155 0.927 0.773 0.618 0.773 0.309 
4000 1.546 0.464 0.618 0.464 2.782 0.773 1.391 1.700 0.773 
5000 1.546 0.464 1.391 0.618 2.937 1.546 1.391 2.164 0.773 

  
  Trial 4 Trial 5 MOGA 

# Func. 
Evals v1 v2 v3 v1 v2 v3 v1 v2 v3 

  % Within ε % Within ε % Within ε 
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1000 0.000 0.000 0.155 0.000 0.000 0.000 0.000 0.000 0.000 
2000 0.464 0.309 0.155 0.000 0.155 0.000 0.155 0.000 0.000 
3000 0.464 0.309 0.155 0.000 0.464 0.000 0.155 0.000 0.155 
4000 0.618 0.464 0.155 0.155 0.464 0.000 0.618 0.000 0.309 
5000 0.618 0.464 0.155 0.155 0.618 0.000 0.773 0.000 0.309 

 Table 19.  Average ε-performance Results Trials 1-5 and MOGA – VCM 
5,000 Point Trial Averages 

# Func. 
Evals Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 MOGA 

  % Within ε 
500 0.052 0.103 0.052 0.000 0.000 0.000 

1000 0.155 0.206 0.103 0.052 0.000 0.000 
2000 0.361 0.412 0.258 0.309 0.052 0.052 
3000 0.824 0.618 0.567 0.309 0.155 0.103 
4000 0.876 1.340 1.288 0.412 0.206 0.309 
5000 1.133 1.700 1.443 0.412 0.258 0.361 
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Table 20.  Example of ε and ε-performance Values 
Trial 8 v1 

ε ε-performance # Pareto Points 
in Reference Set 

0.001 0.13 10,162 
0.005 0.67 2,071 
0.01 4.17 647 
0.05 26.70 30 
0.1 50.00 10 
0.2 66.70 3 
0.3 100.00 2 

 

As expected, Table 21 (detailed 10,000 function evaluation trial results) and Table 22 

(average 10,000 function evaluation trial results) show that the 10,000 function 

evaluation trials perform even better than the 5,000 function evaluation trials in nearly 

every case, with Trial 8 performing the best.  When given 10,000 function evaluations, 

the user trials find on average 1.24% - 3.50% of the reference set, while the trials without 

a human-in-the-loop find 0.36% - 0.57% on average, meaning the user trials are able to 

find up to 6x as many Pareto points as the MOGA and 10x as many as a random search. 
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Table 21.  ε-performance Results Trials 6-10 and MOGA – VCM 
10,000 Point Trials 

  Trial 6 Trial 7 Trial 8 
# Func. 
Evals v1 v2 v3 v1 v2 v3 v1 v2 v3 

  % Within ε % Within ε % Within ε 
500 0.000 0.000 0.155 0.464 0.000 0.000 0.000 0.155 0.000 

1000 0.000 0.309 0.155 1.700 0.000 0.000 0.000 0.309 0.155 
2500 0.155 0.927 0.927 1.700 0.155 0.000 0.464 1.236 0.464 
5000 0.773 0.927 2.782 2.318 0.309 0.464 2.628 2.937 1.236 
7500 1.700 1.236 2.937 2.473 0.927 1.236 3.709 2.937 1.700 

10000 2.009 1.236 2.937 3.555 2.009 1.700 4.173 3.709 2.628 
  

  Trial 9 Trial 10 MOGA 
# Func. 
Evals v1 v2 v3 v1 v2 v3 v1 v2 v3 

0 % Within ε % Within ε % Within ε 
500 0.155 0.309 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1000 0.155 0.464 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2500 0.309 0.927 0.155 0.000 0.000 0.000 0.155 0.000 0.155 
5000 0.464 1.082 0.773 0.000 0.155 0.155 0.773 0.000 0.309 
7500 0.464 1.236 1.236 0.000 0.309 0.464 0.773 0.155 0.618 

10000 0.773 1.546 1.391 0.000 0.464 0.618 0.927 0.155 0.618 

Table 22.  Average ε-performance Results Trials 6-10 and MOGA – VCM 
10,000 Point Trial Averages 

# Func. 
Evals Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 MOGA 

  % Within ε 
500 0.052 0.155 0.052 0.155 0.000 0.000 

1000 0.155 0.567 0.155 0.206 0.000 0.000 
2500 0.670 0.618 0.721 0.464 0.000 0.103 
5000 1.494 1.030 2.267 0.773 0.103 0.361 
7500 1.958 1.546 2.782 0.979 0.258 0.515 

10000 2.061 2.421 3.503 1.236 0.361 0.567 
 

To gain more insight into the performance of each trial as well as the evolution of 

solutions toward the Pareto frontier, plots of the ε-performance metric at a series of 

intervals leading up to the allocated number of function evaluations are made.  In 

particular, Figure 27a shows the average performance of Trials 1-5 at 500, 1000, 2000, 

3000, 4000, and 5000 function evaluations; Figure 27b shows a similar progression for 
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Trials 6-10 at 500, 1000, 2500, 5000, 7500, and 10,000 function evaluations.  In both 

figures, solutions from the exhaustive MOGA are also plotted based on its convergence 

history; so, for example, the ε-performance metric value plotted at the 500 function 

evaluation point indicates how well the MOGA has found the Pareto frontier by the time 

it has executed 500 of its 80,000 function evaluations.   

 

While the results from Table 19 and Table 22 may not have been too convincing, Figure 

27 clearly illustrates the benefit of having the user “in-the-loop” during the optimization 

process.  On average (with the exception of the basic sampler only trials, Trials 5 and 10), 

all trials out-perform the exhaustive MOGA in terms of the percentage of solutions found 

on the Pareto frontier (i.e., the reference set) for a given number of function evaluations.  

In Figure 27a, the MOGA has obtained fewer than 0.40% of the Pareto frontier in its first 

5000 function evaluations compared to 0.41% - 1.70% in Trials 1-5.  Likewise, even 

when the number of function evaluations has doubled to 10,000, the MOGA has still 

found less than 0.60% of the Pareto frontier solutions compared to the 1.24% - 3.50% 

obtained in Trials 6-10 as indicated in Figure 27b.  In both cases, this represents a 5x - 6x 

increase in the number of Pareto solutions that are obtained when the human is allowed to 

visualize and “steer” the optimization process.  This increase is obtained consistently, 

regardless of the particular combination of visual steering commands that are used or the 

designer who is implementing them.  While the percentage of the Pareto frontier found is 

fairly low (and lower than results from the other two test problems) for even the best 

performing user trials, it should still be considered significant by realizing that the user 

trials were only allotted ~5,000 to ~10,000 function evaluations whereas the reference set 
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is the culmination of approximately 465,000 function evaluations (MOGA 80,000 x 3 

runs + 5,000 x 5 trials x 3 versions + 10,000 x 5 trials x 3 versions). 

 

There are a few important implications that can be taken from the results of the three test 

problems.  In particular, the results show that user-guided trade space exploration with 

visual steering commands is capable of outperforming automated, “blindly” searching 

samplers.  The results are even more dramatic when the automated samplers had 

difficultly finding feasible points, but it should be noted that not all user-guided trials did 

well – simply employing steering commands will not necessarily lead to finding Pareto or 

feasible designs.  The commands were best used in conjunction with observations made 

about the trade space and relationships among design variables to guide the search in the 

desired direction.  In general, the trials that performed the best were those that made 

effective use of the visual steering commands to sample in regions of feasibility, 

particularly, by placing attractors or adjusting the bounds of design variables when using 

the basic sampler.  Chapter 5 summarizes the results and limitations of this research and 

outlines suggestions for future work. 
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(a) Results from Trials 1-5 and Exhaustive MOGA Search 
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(b) Results from Trials 6-10 and Exhaustive MOGA Search 

Figure 27.  Evolution of Pareto Frontiers for VCM, Trial Average and the 
Exhaustive MOGA Search 
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CHAPTER 5 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

As stated earlier, trade space exploration is a promising alternative decision-making 

paradigm that provides a visual and more intuitive means for formulating, adjusting, and 

ultimately solving design optimization problems.  The results of this study indicate that 

the visual steering commands – depending on the complexity of the test problem – can 

provide a 3x - 6x increase in the number of Pareto solutions that are obtained when the 

human is “in-the-loop” during the optimization process compared to an automated 

sampler.  The improvements are even more dramatic in cases where automated samplers 

have a difficult time finding feasible solutions.  In addition, user-guided trials can provide 

a 10x - 32x speed up in the number of Pareto solutions obtained over random searching.  

As such, this study provides empirical evidence of the benefits that interactive 

visualization-based strategies can provide in support of engineering design optimization 

and decision-making.   

 

One limitation of note for the study performed in this thesis is the virtually unlimited 

number of combinations of visual steering commands that could be utilized on these test 

problems.  The results show that the user-guided trials were more effective than the 

automated samplers; however, their performance may have been hindered by the specific 

combination of commands used – experienced users may identify better combinations of 

the visual steering commands as they explore the trade space while less experienced users 

may not yet know how to use visual steering commands as effectively.  Different ways of 

using the commands may have resulted in even better performing trials, and additional 
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trials are needed on a wider variety of test problems by users with varying levels of 

expertise.  Another possible limitation is the number of points allocated for the trials.  

Continuing the trials for more evaluations could help identify at what point the results 

start to plateau in terms of performance, providing useful information for stopping the 

exploration process.   

 

There are several possible extensions of this work.  Additional metrics should be 

considered for comparing the solutions in the resulting Pareto frontiers in terms of both 

the design variables (inputs) as well as the objective function values (outputs).  A multi-

metric strategy would be useful in not only assessing the completeness of the Pareto 

frontiers more thoroughly but also providing guidance to the users if computed in real-

time during the trade space exploration process.  Constraint handling methods should be 

added to the automated samplers to see if their performance improves in highly 

constrained test problems.  An extension of that would be to examine, in the event the 

automated sampler’s performance was able to meet that of the user-guided trials when 

implementing a constraint handling strategy, how quick and effective the user-guided 

visual steering commands would be at searching various regions of the trade space by 

utilizing different commands, as compared to the automated samplers since they would 

need the constraints redefined.  Preliminary investigations of constraint handling 

strategies have been shown to be very effective [34].  Finally, the study should also be 

repeated with even more test problems of different sizes and complexity as well as with 

users with different experience levels to demonstrate how widely applicable – and 

beneficial – the trade space exploration process is. 
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