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ABSTRACT1234 

Trade space exploration is a promising decision-making 
paradigm that provides a visual and more intuitive means for 
formulating, adjusting, and ultimately solving design 
optimization problems.  This is achieved by combining multi-
dimensional data visualization techniques with visual steering 
commands to allow designers to “steer” the optimization 
process while searching for the best, or Pareto optimal, designs.  
In this paper, we compare the performance of different 
combinations of visual steering commands implemented by two 
users to a multi-objective genetic algorithm that is executed 
“blindly” on the same problem with no human intervention.  
The results indicate that the visual steering commands – 
regardless of the combination in which they are invoked – 
provide a 4x -7x increase in the number of Pareto solutions that 
are obtained when the human is “in-the-loop” during the 
optimization process.  As such, this study provides the first 
empirical evidence of the benefits of interactive visualization-
based strategies to support engineering design optimization and 
decision-making.  Future work is also discussed.   

 
Keywords: Visualization, Pareto frontier, multi-objective 

optimization, genetic algorithm. 

1 INTRODUCTION 
Many engineering designers employ optimization-based 

tools and approaches to help them make decisions particularly 
during the design of complex systems such as automobiles, 
aircraft, and spacecraft, which require tradeoffs between 
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conflicting and competing objectives.  Trade space exploration 
is a promising alternative decision-making paradigm that 
provides a visual and more intuitive means for formulating, 
adjusting, and ultimately solving design optimization problems.  
Trade space exploration is an embodiment of the Design by 
Shopping paradigm advocated by Balling [1]: designers, like 
consumers, want to “shop” to gain intuition about trades, what 
is feasible and what is not, and to learn about their alternatives 
first before making decisions.  Balling noted that the traditional 
optimization-based design process of “1) formulate the design 
problem, 2) obtain/develop analysis models, and 3) execute an 
optimization algorithm” often leaves designers unsatisfied with 
their results because the problem is usually improperly 
formulated: “the objectives and constraints used in optimization 
were not what the owners and stakeholders really wanted…in 
many cases, people don’t know what they really want until they 
see some designs” [1].  Similar findings have been reported in 
other fields.  For instance, Wilson and Schooler [2] have shown 
that people do worse at some decision tasks when asked to 
analyze the reasons for their preferences or evaluate all the 
attributes of their choices.  Likewise, Shanteau [3] observed that 
when people are dissatisfied with the results of a rational 
decision making process, they often change their ratings to 
achieve their desired result. 

This paper presents results from ongoing research that is 
formalizing methods, tools, and procedures to support trade 
space exploration.  In particular, in this paper we empirically 
assess the performance of visual steering commands – visually-
specified controls that allow designers to “steer” an 
optimization algorithm – that were introduced in a previous 
paper [4].  This is achieved by comparing the performance of 
two users employing different combinations of the visual 
steering commands to a multi-objective genetic algorithm that is 
executed “blindly” on the same problem with no human 
intervention.  Related research in computational steering is 
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discussed next before reviewing the visual steering commands 
available in our multi-dimensional data visualization software in 
Section 3.  Section 4 describes the test problem used in this 
work and the experimental set-up for our study.  The results and 
findings are discussed in Section 5, and future work is outlined 
in Section 6. 

2 REVIEW OF RELATED WORK 
In the visualization community, interactive optimization-

based methods fall primarily into the area of computational 
steering whereby users (e.g., designers) interact with a model or 
simulation during the optimization process to help “steer” the 
search process toward what looks like an optimal solution.  The 
designer observes some sort of a visual representation of the 
optimization process and then uses intuition, heuristics, and/or 
some other methods to adjust the search to move toward a 
design that may not have been intuitive at the beginning of the 
process.  For instance, Wright, et al. [5] applied computational 
steering to design the geometry and select the grade of glass for 
a furnace.  Kesavadas and Sudhir [6] created large-scale 
manufacturing simulations by allowing users to make quick 
changes “on-the-fly” and continue with the simulation.  Messac 
and Chen [7] proposed an interactive visualization method 
wherein the progress of the optimization is visualized – but not 
steered – throughout the process.  Finally, Visual Design 
Steering [8,9] allows users to stop and redirect the optimization 
process to improve the solution; however, their visualization 
capabilities are currently limited to 2-D and 3-D representations 
of constraints and objectives. 

Scott, et al. [10] recently proposed that including humans 
“in the loop” throughout the decision-making process improves 
the outcome.  They investigated the effects of integrating 
humans into the optimization process, and found that 
“combining the human’s superior intelligence with the 
computer’s superior computational speed can result in better 
solutions than neither could produce alone”.  Additional 
advantages include learning about the problem and the 
interrelationships between objectives and having the ability to 
guide the solution process in a desired direction and possibly 
even changing his/her mind while learning [11].  Solutions 
generated through human interaction are better understood by 
the user than solutions merely given to them by an optimization 
algorithm.  Moreover, the computational costs can be 
significantly reduced since only solutions of interest to the 
decision-maker are generated [10]. 

Madar, et al. [12] are investigating the effects of human 
interaction on a particular optimization algorithm, namely, 
particle swarm optimization.  By using their visual, cognitive, 
and strategic abilities, human users can improve the 
performance of the computer search algorithm.  Thus, 
interactive optimization approaches seek to combine expert 
knowledge with computational power.  Michalek and 
Papalambros [13] propose in their work on architectural layouts 
that “the designer’s interaction causes the program to 
dynamically change the optimization representation on-the-fly 

by adding, deleting, and modifying objectives, constraints, and 
structural units”.  Their “on-the-fly” methodology is applicable 
for architectural design because of its subjective nature, but the 
usefulness of it in complex system design conceptualization 
requires further exploration. 

3 OVERVIEW OF VISUALIZATION SOFTWARE AND 
VISUAL STEERING COMMANDS 

To support trade space exploration, researchers at the 
Applied Research Laboratory (ARL) and Penn State have 
developed the ARL Trade Space Visualizer (ATSV) [14,15], a 
Java-based application that is capable of visualizing multi-
dimensional trade spaces using glyph, 1-D and 2-D histogram, 
2-D scatter, scatter matrix, and parallel coordinate plots, linked 
views [16], and brushing [17].  Figure 1 shows several 
examples of its data visualization capability.  The glyph plot 
(left) can display up to seven dimensions by assigning variables 
to the x-axis, y-axis, z-axis, position, size, color, orientation, 
and transparency of the glyph icons.  The scatter matrix (top 
right), a grid of all 2-D scatter plots, is useful for visualizing 
trends and two-way interactions in the data.  Histograms 
(bottom right) show the distribution of the samples in each 
dimension. 

 

 

Figure 1.  Three Displays of Data in ATSV 

The design variable (input) and performance (output) data 
for different design alternatives can either be generated off-line 
and then input into ATSV for visualization and manipulation or 
it can be generated dynamically “on-the-fly” by linking a 
simulation model directly with ATSV using its Exploration 
Engine capability [4].  If the simulation model is too 
computationally expensive to be executed in real-time, then 
low-fidelity metamodels can be constructed and used as 
approximations for quickly searching the trade space [18].  
Once this link is in place, ATSV provides a suite of controls to 
help designers navigate and explore the trade space, including 
visual steering commands to (1) randomly sample the design 
space, (2) search near a point of interest, (3) search in a 
direction of preference, or (4) search for the Pareto frontier [4].  
A brief summary of each follows. 
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1) Design space samplers are used to populate the trade 
space and are typically invoked if there is no initial data 
available.  The user can sample the design space manually using 
slider bar controls for each input dimension or randomly.  When 
sampling randomly, the user specifies the number of samples to 
be generated and the bounds of the multi-dimensional 
hypercube of X.  Monte Carlo sampling then randomly samples 
the inputs – drawing from a uniform, normal, or triangular 
distribution – and executes the simulation model, storing the 
corresponding output in the database.  The bounds of the design 
variables can be reduced at any point to bias the samples in a 
given region if desired.  An example is shown in Figure 2.   

 
(a) 100 initial samples 

 
(b) 100 new samples in reduced region of interest 

Figure 2.  Example of Design Space Sampler 

2) Point samplers, also referred to as attractors, are used to 
generate new sample points near a user-specified location in the 
trade space.  The attractor is specified in the ATSV interface 
with a graphical icon  that identifies an n-dimensional point 
in the trade space, and then new sample points are generated 
near the attractor – or as close as they can get to it.  
Unbeknownst to the user, the attractor generates new points 
using the Differential Evolution (DE) algorithm [19], which 

assess the fitness of each new sample based on the normalized 
Euclidean distance to the attractor.  As the population evolves in 
DE, the samples get closer and closer to the attractor.  An 
example is shown in Figure 3 where the user specifies an 
attractor to fill in a “gap” in the trade space (see Figure 3a).  
The new samples cluster tightly around Attractor_1 as seen in 
Figure 3b. 

 
(a) 100 initial samples 

 
(b) New samples generated near attractor 

Figure 3.  Example of Point Sampler (Attractor) 

3) Preference-based samplers allow users to populate the 
trade space in regions that perform well with respect to a user-
defined preference function.  New sample points are also 
generated by the DE algorithm, but the fitness of each sample is 
defined by the user’s preference structure instead of the 
Euclidean distance.  An example of the preference-based 
sampler is shown in Figure 4.  Using ATSV’s brushing and 
preference controls, the user specifies a desire to minimize Obj1 
and maximize Obj3 with equal weighting (see Figure 4a).  
Figure 4b shows the initial samples shaded based on this 
preference, and Figure 4c shows the new samples, where the 
concentration of points increases in the direction of preference, 
namely, the upper left hand corner of the plot. 
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(a) Brush settings indicating user preference structure 

  
(b) Initial samples shaded based on preference 

 
(c) New samples generated in direction of preference 

Figure 4.  Example of Preference-based Sampler 

4) Pareto samplers are used to bias the sampling of new 
designs in search of the Pareto frontier once the user has 
defined his/her preferences on the objectives.  The DE 
algorithm is again used to accomplish this sampling but is 
modified to solve multi-objective problems [20].  An example 
of this sampler is shown in Figure 5.  Using the same preference 
(i.e., minimize Obj1 and maximize Obj3 with equal weighting), 
Figure 5a shows the Pareto points in the initial samples while 
Figure 5b shows the Pareto frontier after executing 7 
generations of the DE with a population size of 25 points. 

These visual steering commands can be used together in 
any combination to explore the trade space.  When used in 
concert with the ATSV, designers have a powerful multi-

dimensional visualization tool with the capability to “steer” the 
optimization process while navigating the trade space to find 
the best design.  To determine the extent to which these visual 
steering commands are effective in locating good design 
solutions, the next section describes a study that compares 
different combinations of these visual steering commands to a 
multi-objective genetic algorithm that is executed on the same 
problem with no human intervention. 
 

 
(a) Initial samples (Pareto points denoted by +) 

 
(b) New samples generated along Pareto frontier 

Figure 5.  Example of Pareto Sampler 

4 EXPERIMENTAL SET-UP AND USER TRIALS 

4.1 Test Problem 
The test problem used in this study is a vehicle 

configuration model that was developed to evaluate the 
technical feasibility of new vehicle concepts [21,22,23].  Table 
1 summarizes the problem definition that is used for this trade 
space exploration example.  The inputs to the model are eleven 
high-level vehicle design parameters: ten continuous variables 
that define overall exterior dimensions and positions of the 
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occupants, and one discrete variable, H, that defines the 
vehicle’s powertrain as being one of six options: [1,2,3,4,5,6].  
There are seven outputs from the model, including five 
measures of performance, vehicle mass, and total constraint 
violation, which is zero when all of the constraints internal to 
the model are satisfied (i.e., ConVio = 0).  The continuous 
design variables are normalized to [0,1] based on the input 
bounds while the objectives and vehicle mass are scaled against 
the baseline model.  As noted in the table, we want Obj1 to be 
smaller than the baseline value while larger values are better for 
the other four objectives.  While stating these very general 
preferences beforehand may seem counter-intuitive to trade 
space exploration, the end goal is to demonstrate that the visual 
steering commands used in conjunction with ATSV are more 
effective at obtaining an equally desirable Pareto frontier than 
by simply allowing a MOGA to run “blindly”. 

 
Table 1. Vehicle Problem Definition 

 

4.2 Description of User Trials 
Two sets of user trials were defined for the study based on 

the allocated number of function evaluations that could be used: 
~5,000 and ~10,000, and two users performed each set of trials 
to account for any randomness in the algorithms, placement of 
attractors, or specification of brush/preferences controls.  While 
there are nearly an infinite number of combinations of brushing, 
preference controls, and visual steering commands that could be 
implemented in ATSV, we allowed a more experienced user to 
step through a process that felt “natural” and then had the less 
experienced user replicate those steps as accurately as possible.  
The experienced user was asked to do this multiple times, 
creating four different combinations (Trials 1-4) that used 
approximately 5000 function evaluations and four different 
combinations (Trials 5-8) that used approximately 10,000 
function evaluations.   

The ATSV set-up and parameter settings for Trials 1-4 are 
shown in Figure 6.  Table A in the Appendix A describes the 
specific combinations of brush/preference controls and visual 
steering commands used for each of Trials 1-4.  All four trials 
begin with a relatively small set of randomly generated samples 
before proceeding to different combinations of samplers.  Initial 
motivation for setting attractors comes from the fact that many 
designers use pair-wise comparisons in making decisions [24]; 
comparing only two objectives makes it easy to see 
relationships among them.  Not all attractors were placed for 
this reason; others were placed in an attempt to fill in gaps 
(similar to how the Gap Analyzer was used [23]) in the Pareto 
frontier, or to push the frontier toward optimality as the trade 
space exploration process unfolded.  The preference and Pareto 
samplers were also used in an attempt to fill in the Pareto 
frontier.  Unless specified, the Exploration Engine options (see 
Figure 6c) were left at default settings of generation size = 25, 
population limit = 500, and the Best1Bin selection strategy.  
Figure 7 shows the Pareto frontiers obtained by both users after 
performing Trial 4. 

 

  

 (a) Basic sampler (b) Preferences for Pareto sampler  

  

(c) Specifications in options tab (d) Preference control settings 

Figure 6.  ATSV Set-up for Trials 1-4 
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(a) Trial 4 User 1 Pareto frontier 

 

(b) Trial 4 User 2 Pareto frontier 

Figure 7.  Example of Results from Trial 4 

The second set of four trials (Trials 5-8) each used 
approximately 10,000 points, doubling the number of function 
evaluations allocated to the user.  These four trials all began 
with a small set of random samples to allow the user to specify 
preferences (see Figure 8), but they then varied widely in the 
order and type of attractors and samplers used.  Table B in the 
Appendix describes the user preference settings and specific 
combination of visual steering commands that were used by 
each user for Trials 5-8.  Note that these trials also set a 
preference on ConVio to minimize it before generating too 
many points, with the exception of Trial 5, which set it halfway 
through the trial.  Unless specified, the same options and 
parameter settings were used for these trials as Trials 1-4 (see 
Figure 6c).  Figure 9 shows an example of the Pareto frontiers 
that the two users obtained after completing Trial 6. 

Major attributes of each of the trials can be seen as follows: 
• Trial 1 – Attractors placed based on 2 objective interactions 
• Trial 2 – Tried to push frontier based on what is visible 
• Trial 3 – Attractors placed based on 3 objective interactions 
• Trial 4 – Similar to Trial 2 with options changed to allow for 

more attractors 
• Trial 5 – Tried to push frontier beyond what is visible 

• Trial 6 – Tried to fill in frontier with 3 objective interactions 
• Trial 7 – Allow Pareto and Preference-based samplers to 

alternate and move through feasible space before restarting 
• Trial 8 – Similar to Trial 7 with a different selection strategy 
These eight trails are based mainly on what felt “natural” to the 
users and represent only a fraction of the possible combinations. 
 

  

 (a) Preferences for (b) Preferences control settings 
 Pareto sampler 

Figure 8.  ATSV Set-up for Trials 5-8 

 
(a) Trial 6 User 1 Pareto frontier 

 
(b) Trial 6 User 2 Pareto frontier 

Figure 9.  Example of Results from Trial 6 
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4.3 Reference Pareto Set  
For comparison purposes, the reference (or “best known”) 

Pareto frontier comes from an exhaustive multi-objective GA 
(MOGA) search that was performed previously on the same test 
problem by its originators [22].  In order to ensure the Pareto 
frontier generated by the exhaustive MOGA contained no large 
holes or gaps (i.e., covered the entire objective space), a Gap 
Analyzer was developed that would direct the MOGA to find 
designs in those areas if such a region was found [23].  The 
exhaustive MOGA used approximately 80,000 function 
evaluations to create this reference Pareto frontier (44,769 
points in the final population, 5,561 are Pareto-optimal over the 
continuous objective function space).  Even with the Gap 
Analyzer, the MOGA ran “blindly”, requiring no human 
intervention while searching the trade space; hence, it provides 
a suitable benchmark for this study.   

4.4 Performance Measures 
To quantify the performance and compare the results of the 

genetic algorithms rigorously, a variety of performance metrics 
have been developed [25].  Okabe, et al. [26] states that these 
metrics should be used to assess (1) the number of Pareto-
optimal solutions in the set, (2) the closeness of the solutions to 
the theoretical Pareto-front, and (3) the distribution and spread 
of the solutions.  Zitzler [27] proposed a hyper-volume metric, 
which evaluates the size of the dominated space.  Reed and 
Tang [28] have developed and refined performance metrics to 
evaluate two Pareto frontiers in a 5-D trade space.  In particular, 
ε-performance has been used to assess the relative 
computational efficiency, accuracy, and ease-of-use.  The ε-
performance metric developed by Kollat and Reed [29,30] was 
selected as the basis for comparison. 

This ε-performance metric assesses the proportion of 
solutions that were found within a user-specified level of 
precision relative to the “true” Pareto frontier, or best available 
reference set.  In other words, the user can specify a precision 
level for each objective to tailor it to a given application.  The 
solutions are then evaluated with respect to the reference set 
based on this user specified precision.  The proportion of 
reference set solutions that are found by the GA within this level 
of precision is reported as ε-performance.  Since the solutions 
are evaluated with respect to a best known reference Pareto set, 
it is possible that the solutions may at times dominate reference 
set solutions.  To account for this, ε-performance is reported in 
this study as the proportion of reference set solutions that are 
dominated, or found within the user-specified ε precision.  
These metrics allow for numerical comparison between the 
solutions generated using the different combinations of visual 
steering commands within ATSV and the reference Pareto 
frontier obtained from the exhaustive MOGA that used 80,000 
function evaluations. 

5 ANALYSIS AND DISCUSSION OF RESULTS 
Figure 10 provides a visual comparison of the resulting 

Pareto frontiers from individual trials along with the reference 

set.  While it is difficult to make comparisons in 5-D, we can 
identify from these figures the trials that did well and those that 
did not.  For instance, Trial 4 by User 2 (see Figure 10b) is 
much sparser than the other figures, especially when compared 
to the reference set (see Figure 10e).  Figure 10f provides a 
composite of all eight trials where the reference set from the 
exhaustive MOGA is shown in blue, solutions from Trials 1-4 
and Trials 5-8 that are the same as the MOGA solutions are 
shown in green and red, respectively.  As expected, the MOGA 
solutions dominate the majority of the solutions obtained from 
either set of trials; however, it is promising to see that some 
solutions remain given that the trials used about 5000 and 
10,000 function evaluations compared to MOGA’s 80,000.   

Before comparing the sets of solutions quantitatively using 
the ε-performance metric, we need to determine a suitable value 
for epsilon.  After confirming that all input and output variables 
were normalized by the same ranges and scaled against the 
same baseline values, we computed the differences between the 
objectives of every pair of designs in the reference set from 
MOGA.  We found that the smallest difference between any two 
designs was so close to zero that any reasonable value of 
epsilon could be selected.  While choosing an epsilon value that 
was too large would reduce each set to the point that 
comparison would be meaningless, choosing an epsilon value 
that was too small would make it almost impossible to find 
designs within one epsilon of each other in each objective given 
that it is a 5-D space.  Therefore, after performing a sensitivity 
study of epsilon values between 0.001 and 0.1, a value of 0.01 
was selected for each objective and used for this analysis. 

Table 2 shows the results of each trial using the ε-
performance metric for both users (v1 and v2).  As discussed in 
Section 4.4, the reported results are obtained by comparing each 
user’s resulting Pareto set from each trial to the reference set 
obtained from the exhaustive MOGA, which is the best 
approximation of the “true” Pareto frontier that we can obtain.  
We see that when using only 5,000 points, both users are able to 
obtain 9.3% - 13.9% of the reference set; when allocated 10,000 
points, both users are able to increase this range to 12.9% - 
22.4%.  Thus, users are able to obtain, on average, 12% and 
18% of the solutions on the Pareto frontier by using 1/16th and 
1/8th, respectively, of the number of function evaluations used 
by the exhaustive MOGA.  

 
Table 2.  Results based on ε-performance Metric 

Trials 1-4 (5000 Points), % 
Trial 1 v1 1 v2 2 v1 2 v2 3 v1 3 v2 4 v1 4 v2 Avg 

found  0.00 0.61 0.40 0.20 0.40 1.01 0.20 0.61 0.43 
dominating  12.90 10.69 9.68 13.71 11.69 12.90 13.71 8.67 11.74 

Total 12.90 11.29 10.08 13.91 12.10 13.91 13.91 9.27 12.17 
Trials 5-8 (10,000 Points), % 

Trial 5 v1 5 v2 6 v1 6 v2 7 v1 7 v2 8 v1 8 v2 Avg 
found  0.40 0.00 0.61 0.20 0.40 0.61 0.20 1.21 0.45 

dominating  14.31 12.90 21.37 22.18 17.34 19.36 17.94 18.15 17.94 
Total 14.72 12.90 21.98 22.38 17.74 19.97 18.15 19.36 18.40 
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 (a) Trial 4 User 1 Pareto frontier (b) Trial 4 User 2 Pareto frontier 

   
 (c) Trial 6 User 1 Pareto frontier (d) Trial 6 User 2 Pareto frontier 

   
 (e) Reference Pareto frontier (f) Pareto solutions color-coded by trial 

Figure 10.  Example of Visual Comparisons of Resulting Pareto Frontiers

Table 2 also shows that the 10,000 function evaluation 
trials perform better than the 5,000 function evaluation trials as 
one would expect, with Trial 6 performing the best.  Not 
surprisingly, the percentage of designs found within epsilon of 

the reference solutions is very low for every trial.  This is likely 
a result of the objective space being 5-D, which makes it very 
difficult to find two designs that fall within 0.01 of each other in 
all five objectives.  An unexpected result, however, is how high 
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the percentage of designs dominating the reference is for each 
trial.  This indicates that the reference set generated by the 
exhaustive MOGA is likely not the “true” Pareto set, but rather 
itself an approximation of the “true” set.  This also shows that a 
user-guided trial in ATSV could possibly have a better chance 
of obtaining the “true” Pareto set than the MOGA.   

To gain more insight into the performance of each trial as 
well as the evolution of solutions toward the Pareto frontier, we 
plot the ε-performance metric at a series of intervals leading up 
to the allocated number of function evaluations.  In particular, 
Figure 11a shows the performance of each user (v1 and v2) in 
Trials 1-4 at 500, 1000, 2000, 3000, 4000, and 5000 function 
evaluations; Figure 11b shows a similar progression for each 
user for Trials 5-8 at 500, 1000, 2500, 5000, 7500, and 10,000 
function evaluations.  In both figures, solutions from the 
exhaustive MOGA are also plotted based on its convergence 
history; so, for example, the ε-performance metric value plotted 
at the 500 function evaluation point indicates how well the 
MOGA has found the Pareto frontier by the time it has executed 
500 of its 80,000 function evaluations.   

 

 

(a) Results from Trials 1-4 and Exhaustive MOGA Search 

 

(b) Results from Trials 5-8 and Exhaustive MOGA Search 

Figure 11.  Evolution of Pareto Frontiers in Each Trial 
and the Exhaustive MOGA Search 

While the results from Table 2 may not have been too 
convincing, Figure 11 clearly illustrates the benefit of having 
the user “in-the-loop” during the optimization process.  In all 
trials, both users have substantially out-performed the 
exhaustive MOGA in terms of the percentage of solutions found 
on the Pareto frontier (i.e., the reference set) for a given number 
of function evaluations.  In Figure 11a, the MOGA has obtained 
fewer than 2% of the Pareto frontier in its first 5000 function 
evaluations compared to 9.3% - 13.9% in Trials 1-4.  Likewise, 
even when the number of function evaluations has doubled to 
10,000, the MOGA has still found fewer than 3% of the Pareto 
frontier solutions compared to the 12.9% - 22.4% obtained in 
Trials 5-8 as indicated in Figure 11b.  In both cases, this 
represents a 4x -7x increase in the number of Pareto solutions 
that are obtained when the human is allowed to visualize and 
“steer” the optimization process.  This increase is consistent, 
regardless of the combination of visual steering commands that 
are used or the designer implementing them.  

6 CONCLUSIONS AND FUTURE WORK 
Trade space exploration is a promising alternative decision-

making paradigm that provides a visual and more intuitive 
means for formulating, adjusting, and ultimately solving design 
optimization problems.  The results of this study indicate that 
the visual steering commands – regardless of the combination in 
which they are invoked – cam provide a 4x -7x increase in the 
number of Pareto solutions that are obtained when the human is 
“in-the-loop” during the optimization process.  As such, this 
study provides the first empirical evidence of the benefits that 
interactive visualization-based strategies can provide in support 
of engineering design optimization and decision-making.   

There are several possible extensions of this work.  
Additional metrics should be considered for comparing the 
solutions in the resulting Pareto frontiers in terms of both the 
design variables (inputs) as well as the objective function values 
(outputs).  A multi-metric strategy would be useful in not only 
assessing the goodness of the Pareto frontiers more thoroughly 
but also providing guidance to users if they were computed in 
real-time during the trade space exploration process.  A more 
extensive reference set should also be developed given the high 
dimensionality of the trade space that is being explored.  
Having a more complete reference set would prevent any 
individual trial from being able to dominate the reference set (or 
any portion thereof); trials would only be able to find points in 
the reference set within epsilon.  Finally, the study should also 
be repeated with test problems of different sizes and complexity 
as well as with users with different levels of experience to 
demonstrate how widely applicable – and beneficial – the trade 
space exploration process is. 
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APPENDIX 

Table A.  Specification of Visual Steering Commands for Trials 1-4 
Trial 1 (Total Points: 5025) Trial 2 (Total Points: 5075) 

- Basic Sampler:  100 runs 
- Brush objectives 1-5:  Minimize 

objective 1 (-100), maximize objectives 
2-5 (100) 

- Point attractors:  10 possible pair-wise 
point attractors for objectives 1-5 set at 
the current limits of the scatter plot 
window (on objectives [1 & 2], [3 & 4], [5 
& 1], [2 & 3], [4 & 5], [1 & 3], [2 & 4], [3 & 
5], [4 & 1], [5 & 2]) 

- Pareto Sampler 

- Basic Sampler:  500 runs 
- Brush objectives 1-5:  Minimize objective 1 (-100), maximize objectives 2-5 (100) 
- Pareto Sampler 
- Line attractors (1-d point attractor):  One for each objective 1-5 set at the current limit of the 

scatter plot window (minimum of window for objective 1 and maximum of window for objectives 
2-5) 

- Preference Sampler 
- Point attractors:  Set at current limits of the scatter plot window (on objectives [2 & 5], [2 & 4]) 
- Point attractors:  Set at the current limits of the scatter plot window, generation size changed to 

15 (on objectives [3 & 2], [3 & 4], [1 & 5], [2 & 5]) 
- Point attractor:  Set at the current limits of the scatter plot window (on objectives [3 & 5]) 

Trial 3 (Total Points: 5525) Trial 4 (Total Points: 5375) 
- Basic Sampler:  500 runs 
- Brush objectives 1-5:  Minimize 

objective 1 (-100), maximize objectives 
2-5 (100) 

- Point attractors:   Set at the current 
limits of the glyph plot window (on 
objectives [1, 2, & 3], [1, 2, & 4], [1, 2, & 
5], [1, 3, & 4], [1, 3, & 5], [1, 4, & 5], [2, 
3, & 4], [2, 3, & 5], [2, 4, & 5], [3, 4, & 5]) 

- Pareto Sampler  

- Basic Sampler:  100 runs 
- Brush objectives 1-5:  Minimize objective 1 (-100), maximize objectives 2-5 (100) 
- Line attractors (1-d point attractors):  Set at the current limits of the scatter plot window (on 

objectives 1–5) 
- Pareto Sampler 
- Point attractors:  Set at the current limits of the scatter plot window, generation size changed to 

15 and population limit changed to 250 (on objectives [1 & 2], [1 & 3], [1 & 4], [1 & 5], [2 & 3], 
[2 & 4], [2 & 5], [3 & 4], [3 & 5], [4 & 5]) 

- Line attractor (1-d point attractor): Set objective 3 at current limit of the scatter plot window 
- Point attractors:  Set at current limits of the scatter plot window (on objectives [3 & 4], [4 & 5]) 

Table B.  Specification of Visual Steering Commands for Trials 5-8 
Trial 5 (Total Points: 10,325) Trial 6 (Total Points: 10,075) 

- Basic Sampler:  100 runs 
- Brush objectives 1-5:  Minimize objective 1 (-100), 

maximize objectives 2-5 (100) 
- Point attractors:  Set at the current limits of the scatter plot 

window ± 5% for minimizing or maximizing, respectively 
(on objectives [1 & 2], [2 & 3], [3 & 4], [4 & 5], [5 & 1], [1 & 
3], [3 & 5], [5 & 2], [2 & 4], [4 & 1]) 

- Preference Sampler 
- Point attractors:  These specific values were used to fill in 

the Pareto frontier ([Obj1 = 0.9, Obj2 = 1.102], [Obj1 = 
0.645, Obj2 = .872], [Obj2 = 1.144, Obj3 = .988]) 

- Line attractors (1-d point attractors):  These specific values 
were used to fill in the Pareto frontier ([Obj4 = 1.124], 
[Obj5 = 1.191]) 

- Brush (preference):  Minimize ConVio (-100) 
- Preference Sampler 
- Pareto Sampler 
- Line attractors (1-d point attractors):  One for each 

objective 1-5 set at the feasible limit of the objective in the 
scatter window (minimum for objective 1 and maximum for 
objectives 2-5) 

- Pareto Sampler 

- Basic Sampler:  250 runs 
- Brush objectives 1-5 and ConVio:  Minimize objective 1 and ConVio (-100), 

maximize objectives 2-5 (100) 
- Preference Sampler:  Generation size changed to 50 and population limit 

changed to 1,000 
- Pareto Sampler:  Generation size changed to 50 and population limit 

changed to 1,000 
- Point attractors:  Set at the current limits of the scatter plot window (on 

[ConVio & Obj1], [ConVio & Obj2], [ConVio & Obj3], [ConVio & Obj4], 
[ConVio & Obj5]) 

- Pareto Sampler  Generation size changed to 50 and population limit 
changed to 1,000 

- Point attractors:  These specific values were used to fill in the Pareto frontier 
([ConVio = 0, Obj1 = 1.043, Obj2 = 1.2], [ConVio = 0, Obj1 = .755, Obj3 = 
1.026], [ConVio = 0, Obj1 = .911, Obj4 = 1.121], [ConVio = 0, Obj1 = .729, 
Obj2 = 1.153], [ConVio = 0, Obj2 = 1.126, Obj3 = .993], [ConVio = 0, Obj2 = 
1.186, Obj4 = 1.099], [ConVio = 0, Obj2 = 1.154, Obj5 = 1.052], [ConVio = 0, 
Obj3 = 1.018, Obj4 = 1.123], [ConVio = 0, Obj3 = 1.003, Obj5 = 1.137], 
[ConVio = 0, Obj4 = 1.121, Obj5 = 1.105], [ConVio = 0, Obj3 = .923, Obj5 = 
.993], [ConVio = 0, Obj2 = 1.207, Obj5 = .853]) 

- Preference Sampler 
- Pareto Sampler 
- Point attractors:  Use these specific values to fill in the Pareto frontier ([Obj1 

= .802, Obj2 = .851, Obj3 = 1.007], [Obj3 = 1.003, Obj2 = .854], [Obj1 = 
1.073, Obj2 = 1.19], [Obj4 = .995, Obj5 = .824], [Obj3 = .955, Obj4 = 1.119]) 

- Pareto Sampler:  Population limit changed to 250 
Trial 7 (Total Points: 10,125) Trial 8 (Total Points: 10,275) 

- Basic Sampler:  25 runs 
- Brush objectives 1-5 and ConVio:  Minimize objective 1 

and ConVio (-100), maximize objectives 2-5 (100) 
- Pareto Sampler:  Generation size changed to 50 and 

population limit changed to 1,000 
- Preference Sampler:  Generation size changed to 50 and 

population limit changed to 1,000 
- Repeated Pareto and Preference Samplers in above order 

with the same settings four more times 
- Pareto Sampler:  Generation size changed to 50 and 

population limit changed to 1,000 

- Basic Sampler:  25 runs 
- Brush objectives 1-5 and ConVio:  Minimize objective 1 and ConVio (-100), 

maximize objectives 2-5 (100) 
- Pareto Sampler:  Generation size changed to 50, population limit changed to 

1,000, and selection strategy changed to Rand1Bin 
- Preference Sampler:  Generation size changed to 50, population limit 

changed to 1,000, and selection strategy changed to Rand1Bin 
- Repeated Pareto and Preference Samplers in above order with the same 

settings four more times 


