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ABSTRACT

Trade space exploration is a promising decisioningak
paradigm that provides a visual and more intuitiveans for
formulating, adjusting, and ultimately solving dgsi
optimization problems. This is achieved by comignmulti-
dimensional data visualization techniques with aissteering
commands to allow designers to “steer” the optitiore
process while searching for the best, or Paretionaptdesigns.
In this paper, we compare the performance of differ
combinations of visual steering commands implengbietwo
users to a multi-objective genetic algorithm th&itexecuted
“pblindly” on the same problem with no human intemtien.
The results indicate that the visual steering conmisa—
regardless of the combination in which they areokad —
provide a 4x -7x increase in the number of Paretoti®ns that
are obtained when the human is “in-the-loop” duritige
optimization process. As such, this study provides first
empirical evidence of the benefits of interactivsualization-
based strategies to support engineering desigmizatiion and
decision-making. Future work is also discussed.

Keywords: Visualization, Pareto frontier, multi-objective
optimization, genetic algorithm.

1 INTRODUCTION

Many engineering designers employ optimization-tase

tools and approaches to help them make decisiornEydarly
during the design of complex systems such as auii@so
aircraft, and spacecraft, which require tradeoffstwieen
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conflicting and competing objectives. Trade spexgloration
is a promising alternative decision-making paradighat

provides a visual and more intuitive means for falating,

adjusting, and ultimately solving design optimieatiproblems.
Trade space exploration is an embodiment of theignely

Shopping paradigm advocated by Balling [1]: designéike

consumers, want to “shop” to gain intuition abaaides, what
is feasible and what is not, and to learn abodit tideernatives
first before making decisions. Balling noted ttia traditional
optimization-based design process of “1) formulhie design
problem, 2) obtain/develop analysis models, andxX&cute an
optimization algorithm” often leaves designers tis§ad with

their results because the problem is usually imgryp
formulated: “the objectives and constraints usedgtimization

were not what the owners and stakeholders reallyteda..in

many cases, people don’'t know what they really wemtit they

see some designs” [1]. Similar findings have bemorted in
other fields. For instance, Wilson and Schooléhi@ve shown
that people do worse at some decision tasks whkeda®m

analyze the reasons for their preferences or etelat the
attributes of their choices. Likewise, Shantedwf&erved that
when people are dissatisfied with the results ofational

decision making process, they often change thdings to

achieve their desired result.

This paper presents results from ongoing resedrahis
formalizing methods, tools, and procedures to stppade
space exploration. In particular, in this paper evapirically
assess the performance of visual steering commanrdsially-
specified controls that allow designers to “steegh
optimization algorithm — that were introduced inpeevious
paper [4]. This is achieved by comparing the penfnce of
two users employing different combinations of thisusal
steering commands to a multi-objective genetic rdigm that is
executed “blindly” on the same problem with no hama
intervention. Related research in computationakrstg is
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discussed next before reviewing the visual steecimmgmands
available in our multi-dimensional data visualipatssoftware in
Section 3. Section 4 describes the test problesd us this
work and the experimental set-up for our studye Tésults and
findings are discussed in Section 5, and futurekvi®outlined
in Section 6.

2 REVIEW OF RELATED WORK

In the visualization community, interactive optimtin-
based methods fall primarily into the area of cotapanal
steering whereby users (e.g., designers) interglastaxmodel or
simulation during the optimization process to h&dfeer” the
search process toward what looks like an optimiaitiem. The
designer observes some sort of a visual repregamtaf the
optimization process and then uses intuition, stios, and/or
some other methods to adjust the search to movartbwa
design that may not have been intuitive at therregg of the
process. For instance, Wright, et al. [5] appkedputational
steering to design the geometry and select theegradlass for
a furnace. Kesavadas and Sudhir [6] created lscgke
manufacturing simulations by allowing users to majeck
changes “on-the-fly” and continue with the simwati Messac
and Chen [7] proposed an interactive visualizatroathod
wherein the progress of the optimization is visedi — but not
steered — throughout the process. Finally, VisDalsign
Steering [8,9] allows users to stop and redireetdptimization
process to improve the solution; however, theiuaigation
capabilities are currently limited to 2-D and 3-€presentations
of constraints and objectives.

Scaott, et al. [10] recently proposed that includmgnans
“in the loop” throughout the decision-making pros@sproves
the outcome. They investigated the effects of girstng

humans into the optimization process, and foundt tha

“combining the human’s superior intelligence witthet
computer’s superior computational speed can rasulietter
solutions than neither could produce alone”. Aiddal
advantages include learning about the problem amel
interrelationships between objectives and havirg ahility to
guide the solution process in a desired directioth possibly
even changing his/her mind while learning [11]. IuBons
generated through human interaction are better retwtl by
the user than solutions merely given to them bggtimization
algorithm. Moreover, the computational costs caa
significantly reduced since only solutions of imsr to the
decision-maker are generated [10].

Madar, et al. [12] are investigating the effectshoiman
interaction on a particular optimization algorithmamely,
particle swarm optimization. By using their visuabgnitive,

and strategic abilities, human users can improve th
performance of the computer search algorithm.  Thus

interactive optimization approaches seek to comterpert

knowledge with computational power. Michalek and

Papalambros [13] propose in their work on architedtlayouts
that “the designer’'s interaction causes the progrém
dynamically change the optimization representatiorthe-fly

by adding, deleting, and modifying objectives, ¢oaigats, and
structural units”. Their “on-the-fly” methodolodgyg applicable
for architectural design because of its subjeatiaiire, but the
usefulness of it in complex system design concdightion
requires further exploration.

3 OVERVIEW OF VISUALIZATION SOFTWARE AND
VISUAL STEERING COMMANDS

To support trade space exploration, researchershat
Applied Research Laboratory (ARL) and Penn Statgeha
developed the ARL Trade Space Visualizer (ATSV),I5}, a
Java-based application that is capable of visumgizinulti-
dimensional trade spaces using glyph, 1-D and Z2sibdram,
2-D scatter, scatter matrix, and parallel coordinaots, linked
views [16], and brushing [17]. Figure 1 shows sake
examples of its data visualization capability. Tdigph plot
(left) can display up to seven dimensions by agsigaariables
to the x-axis, y-axis, z-axis, position, size, eplorientation,
and transparency of the glyph icons. The scattatrix(top
right), a grid of all 2-D scatter plots, is usefal visualizing
trends and two-way interactions in the data. Hisimns
(bottom right) show the distribution of the samplaseach
dimension.

Figure 1. Three Displays of Data in ATSV

The design variable (input) and performance (oQtdata
for different design alternatives can either beegated off-line
and then input into ATSV for visualization and maration or
it can be generated dynamically “on-the-fly” by King a
simulation model directly with ATSV using its Expédion
Engine capability [4]. If the simulation model i®o
computationally expensive to be executed in reaéti then
low-fidelity metamodels can be constructed and used
approximations for quickly searching the trade sp4t8].
Once this link is in place, ATSV provides a suifecontrols to
help designers navigate and explore the trade spaadading
visual steering commands to (1) randomly sampledisign
space, (2) search near a point of interest, (3ycbemn a
direction of preference, or (4) search for the Raf@ntier [4].
A brief summary of each follows.
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1) Design space samplee used to populate the trade

space and are typically invoked if there is noiahitdata
available. The user can sample the design spaceaiyausing
slider bar controls for each input dimension odi@nly. When
sampling randomly, the user specifies the numbesaaiples to

assess the fithess of each new sample based owtmalized
Euclidean distance to the attractor. As the pdmraevolves in
DE, the samples get closer and closer to the &itracAn
example is shown in Figure 3 where the user smecifin
attractor to fill in a “gap” in the trade space €s€igure 3a).

be generated and the bounds of the multi-dimenkiona The new samples cluster tightly around Attractoaslseen in
hypercube oX. Monte Carlo sampling then randomly samples Figure 3b.

the inputs — drawing from a uniform, normal, oratgular
distribution — and executes the simulation modgdrisg the
corresponding output in the database. The bouhtteaesign
variables can be reduced at any point to bias angpkes in a
given region if desired. An example is shown igufe 2.
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(b) 100 new samples in reduced region of interest

Figure 2. Example of Design Space Sampler

2) Point samplersalso referred to as attractors, are used to

generate new sample points near a user-specifiadido in the
trade space. The attractor is specified in the\ATi8erface
with a graphical icord that identifies am-dimensional point
in the trade space, and then new sample pointgemerated
near the attractor — or as close as they can gett.to
Unbeknownst to the user, the attractor generates pants
using the Differential Evolution (DE) algorithm [JLl9which
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(b) New samples generated near attractor

Figure 3. Example of Point Sampler (Attractor)

3) Preference-based sampleaiow users to populate the
trade space in regions that perform well with respe a user-
defined preference function. New sample points also
generated by the DE algorithm, but the fithessamhesample is
defined by the user’'s preference structure insteadthe
Euclidean distance. An example of the prefereraset
sampler is shown in Figure 4. Using ATSV’'s brughiand
preference controls, the user specifies a desingrionize Obj1
and maximize Obj3 with equal weighting (see Figyi®).
Figure 4b shows the initial samples shaded basedhin
preference, and Figure 4c shows the new samplestenthe
concentration of points increases in the directbpreference,
namely, the upper left hand corner of the plot.
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Figure 4. Example of Preference-based Sampler

4) Pareto samplersare used to bias the sampling of new
designs in search of the Pareto frontier once tber unas
defined his/her preferences on the objectives. TDie
algorithm is again used to accomplish this samplng is
modified to solve multi-objective problems [20].nAxample
of this sampler is shown in Figure 5. Using theesareference
(i.e., minimize Objl and maximize Obj3 with equadighting),
Figure 5a shows the Pareto points in the initimh@as while
Figure 5b shows the Pareto frontier after executing
generations of the DE with a population size op2tts.

These visual steering commands can be used togiether
any combination to explore the trade space. Whsed un
concert with the ATSV, designers have a powerfulltimu

dimensional visualization tool with the capability “steer” the
optimization process while navigating the tradecsp# find
the best design. To determine the extent to wtiielse visual
steering commands are effective in locating goodighe
solutions, the next section describes a study tuoabpares
different combinations of these visual steering o@nds to a
multi-objective genetic algorithm that is executad the same
problem with no human intervention.
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Figure 5. Example of Pareto Sampler

4 EXPERIMENTAL SET-UP AND USER TRIALS

4.1 Test Problem
The test problem used in this study is a vehicle

configuration model that was developed to evaludie
technical feasibility of new vehicle concepts [21,23]. Table
1 summarizes the problem definition that is usedtlies trade
space exploration example. The inputs to the madzekleven
high-level vehicle design parameters: ten contisueariables
that define overall exterior dimensions and posdiof the
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occupants, and one discrete variable, H, that dgfithe

vehicle’s powertrain as being one of six optior{s2[3,4,5,6].

There are seven outputs from the model, including f
measures of performance, vehicle mass, and totadtizont

violation, which is zero when all of the constraimternal to

the model are satisfied (i.e., ConVio = 0). Thentoaious

design variables are normalized to [0,1] based hen ibput

bounds while the objectives and vehicle mass aked@gainst
the baseline model. As noted in the table, we W@lijfl to be

smaller than the baseline value while larger vahresbetter for
the other four objectives. While stating theseyvgeneral

preferences beforehand may seem counter-intuitivdrade

space exploration, the end goal is to demonsthatiethe visual
steering commands used in conjunction with ATSV @i@re

effective at obtaining an equally desirable Pafedotier than

by simply allowing a MOGA to run “blindly”.

Table 1. Vehicle Problem Definition

Model Inputs
Variable| Lower Bound Upper Bound

A 0 1

B 0 1

& 0 1

D 0 1

E 0 1

F 0 1

G 0 1

H 12345 or6

I 0 1

J 0 1

K 0 1

Model Outputs

Conlio | 0 = feasible = 0 = infeasible
Mass Baszeline =1 [ Defines weight class
Ol Baseline=1 Smaller is better
b2 Baseline=1 Lazger is better
Oby3 Bazeline=1 Lazger is better
Obj4 Bazeline=1 Lazger is better
b3 Bazeline=1 Larger is better

4.2 Description of User Trials

Two sets of user trials were defined for the stbdged on
the allocated number of function evaluations tlmatid be used:
~5,000 and ~10,000, and two users performed edatf sdals
to account for any randomness in the algorithmescerhent of
attractors, or specification of brush/preferencastrols. While
there are nearly an infinite number of combinatiohbrushing,
preference controls, and visual steering commamatscould be
implemented in ATSV, we allowed a more experienasdr to
step through a process that felt “natural” and thad the less
experienced user replicate those steps as acgueatglossible.
The experienced user was asked to do this multiphes,
creating four different combinations (Trials 1-4)at used
approximately 5000 function evaluations and fouffedént
combinations (Trials 5-8) that used approximateld,000
function evaluations.

The ATSV set-up and parameter settings for Triadsdre
shown in Figure 6. Table A in the Appendix A ddses the
specific combinations of brush/preference contientsl visual
steering commands used for each of Trials 1-4. falf trials
begin with a relatively small set of randomly gexted samples
before proceeding to different combinations of skengp Initial
motivation for setting attractors comes from thet fdat many
designers use pair-wise comparisons in making esiq24];
comparing only two objectives makes
relationships among them. Not all attractors weleeced for
this reason; others were placed in an attemptltdnfigaps
(similar to how the Gap Analyzer was used [23]}ha Pareto
frontier, or to push the frontier toward optimalig the trade
space exploration process unfolded. The preferandePareto
samplers were also used in an attempt to fill ia Bareto
frontier. Unless specified, the Exploration Engopions (see
Figure 6¢) were left at default settings of gerierasize = 25,
population limit = 500, and the BestlBin selectistnategy.
Figure 7 shows the Pareto frontiers obtained b bsers after
performing Trial 4.
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Figure 6. ATSV Set-up for Trials 1-4
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Figure 7. Example of Results from Trial 4

The second set of four trials (Trials 5-8) eachduse

approximately 10,000 points, doubling the nhumbefuoiction
evaluations allocated to the user. These foulstial began
with a small set of random samples to allow the tsepecify
preferences (see Figure 8), but they then varietelyiin the
order and type of attractors and samplers usedhle & in the
Appendix describes the user preference settings spedific
combination of visual steering commands that weseduby
each user for Trials 5-8. Note that these tridio aset a
preference on ConVio to minimize it before genagttoo
many points, with the exception of Trial 5, whiddt & halfway
through the trial. Unless specified, the same omsti and
parameter settings were used for these trials iadsTtr-4 (see
Figure 6c¢). Figure 9 shows an example of the Bdrentiers
that the two users obtained after completing Wial
Major attributes of each of the trials can be seefollows:

» Trial 1 — Attractors placed based on 2 objectiverimctions
e Trial 2 — Tried to push frontier based on whatighle
» Trial 3 — Attractors placed based on 3 objectiverimctions
» Trial 4 — Similar to Trial 2 with options changesidllow for

more attractors
e Trial 5 — Tried to push frontier beyond what isibie

e Trial 6 — Tried to fill in frontier with 3 objecti interactions
e Trial 7 — Allow Pareto and Preference-based samapier
alternate and move through feasible space befstartimg
e Trial 8 — Similar to Trial 7 with a different sel&an strategy
These eight trails are based mainly on what fedttral” to the
users and represent only a fraction of the possitebinations.
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Figure 8. ATSV Set-up for Trials 5-8
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Figure 9. Example of Results from Trial 6
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4.3 Reference Pareto Set

For comparison purposes, the reference (or “bestvkh)
Pareto frontier comes from an exhaustive multi-otoye GA
(MOGA) search that was performed previously ongame test
problem by its originators [22]. In order to ersuhe Pareto
frontier generated by the exhaustive MOGA containedarge
holes or gaps (i.e., covered the entire objectpacs), a Gap
Analyzer was developed that would direct the MO®Afihd
designs in those areas if such a region was fo@8{ [ The

set. While it is difficult to make comparisons 5AD, we can
identify from these figures the trials that did lehd those that
did not. For instance, Trial 4 by User 2 (see FegliOb) is
much sparser than the other figures, especiallyhvwdeenpared
to the reference set (see Figure 10e). Figurept@¥ides a
composite of all eight trials where the refereneé fsom the
exhaustive MOGA is shown in blue, solutions fronialer 1-4
and Trials 5-8 that are the same as the MOGA swistiare
shown in green and red, respectively. As expedtei MOGA

exhaustive MOGA used approximately 80,000 function solutions dominate the majority of the solutiongaited from

evaluations to create this reference Pareto frornte,769
points in the final population, 5,561 are Parettiroal over the
continuous objective function space). Even witke tGap
Analyzer, the MOGA ran “blindly”, requiring no huma
intervention while searching the trade space; heibgeovides
a suitable benchmark for this study.

4.4 Performance Measures

To quantify the performance and compare the restltise
genetic algorithms rigorously, a variety of perfame metrics
have been developed [25]. Okabe, et al. [26] stdtat these
metrics should be used to assess (1) the numbétacdto-
optimal solutions in the set, (2) the closenesthefsolutions to
the theoretical Pareto-front, and (3) the distitutand spread
of the solutions. Zitzler [27] proposed a hypelwe metric,
which evaluates the size of the dominated spaceedRand
Tang [28] have developed and refined performanceicseto
evaluate two Pareto frontiers in a 5-D trade spaoearticular,
e-performance has been used to assess the
computational efficiency, accuracy, and ease-of-uséhe ¢-
performance metric developed by Kollat and Reed3@Pwas
selected as the basis for comparison.

This e-performance metric assesses the proportion of

solutions that were found within a user-specifiexvel of

precision relative to the “true” Pareto frontier,lest available
reference set. In other words, the user can gpacffrecision
level for each objective to tailor it to a givenpéipation. The
solutions are then evaluated with respect to tlereace set
based on this user specified precision. The ptaporof

reference set solutions that are found by the GAimihis level

of precision is reported asperformance. Since the solutions

are evaluated with respect to a best known refer@aceto set,
it is possible that the solutions may at times d@at@ reference
set solutions. To account for thesperformance is reported in
this study as the proportion of reference set swiatthat are
dominated, or found within the user-specifiedprecision.
These metrics allow for numerical comparison betwélge
solutions generated using the different combinatioh visual
steering commands within ATSV and the referenceet®ar
frontier obtained from the exhaustive MOGA thatdi§8,000
function evaluations.

5 ANALYSIS AND DISCUSSION OF RESULTS
Figure 10 provides a visual comparison of the texyl
Pareto frontiers from individual trials along withe reference

relative

either set of trials; however, it is promising teesthat some
solutions remain given that the trials used abd2®05and
10,000 function evaluations compared to MOGAs 80,0

Before comparing the sets of solutions quantitativsing
the e-performance metric, we need to determine a seitehlue
for epsilon. After confirming that all input anditput variables
were normalized by the same ranges and scaled saghia
same baseline values, we computed the differenetsgebn the
objectives of every pair of designs in the refeeeset from
MOGA. We found that the smallest difference betwary two
designs was so close to zero that any reasonalile \of
epsilon could be selected. While choosing an epaiblue that
was too large would reduce each set to the poiat th
comparison would be meaningless, choosing an epsiédue
that was too small would make it almost impossitaefind
designs within one epsilon of each other in eaghative given
that it is a 5-D space. Therefore, after perfogransensitivity
study of epsilon values between 0.001 and 0.1,@evaf 0.01
was selected for each objective and used for tiayais.

Table 2 shows the results of each trial using the
performance metric for both users (v1 and v2).dissussed in
Section 4.4, the reported results are obtainedhyparing each
user’s resulting Pareto set from each trial to réference set

obtained from the exhaustive MOGA, which is the tbes

approximation of the “true” Pareto frontier that wen obtain.
We see that when using only 5,000 points, bothsuses able to
obtain 9.3% - 13.9% of the reference set; whercatied 10,000
points, both users are able to increase this rangE?.9% -
22.4%. Thus, users are able to obtain, on averb2f, and
18% of the solutions on the Pareto frontier by gsin 6" and
1/8", respectively, of the number of function evaluasiaised
by the exhaustive MOGA.

Table 2. Results based on g-performance Metric

Trials 1-4 (5000 Points), %
Trial 1vi|1v2|2v1|2v2|3v1|3v2[{4vl|4v2| Avg
found 0.00|0.61/0.40/0.20{0.40{1.01/0.20|0.61| 0.43
dominating [12.90[10.69 9.68 [13.71/11.69|12.90[13.71/{8.67 | 11.74
Total  [12.90/11.29[10.0813.91j12.10[13.91]13.91/9.27| 12.17
Trials 5-8 (10,000 Points), %
Trial 5v1|5v2|6vl1|6v2|7v1|7v2|{8Vv1|8Vv2| Avg
found 0.40|0.00/0.61|0.20{0.40{0.61/0.20|1.21| 0.45
dominating [14.31]12.90[21.37|22.18[17.34]19.36|17.94(18.15) 17.94
Total  |14.72]12.90[21.9822.38|17.74{19.97|18.15/19.36| 18.40
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the reference solutions is very low for every tridhis is likely
a result of the objective space being 5-D, whiclkesait very
difficult to find two designs that fall within 0.0d4f each other in
all five objectives. An unexpected result, howevwghow high

Table 2 also shows that the 10,000 function evinat
trials perform better than the 5,000 function eatbn trials as
one would expect, with Trial 6 performing the besNot
surprisingly, the percentage of designs found witpsilon of
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the percentage of designs dominating the referenéer each

trial. This indicates that the reference set gateer by the

exhaustive MOGA is likely not the “true” Pareto ,setit rather

itself an approximation of the “true” set. This@lshows that a
user-guided trial in ATSV could possibly have atbethance
of obtaining the “true” Pareto set than the MOGA.

To gain more insight into the performance of ead &s
well as the evolution of solutions toward the Parfedntier, we
plot thee-performance metric at a series of intervals legdip
to the allocated number of function evaluations. péarticular,
Figure 11a shows the performance of each userrdlva) in
Trials 1-4 at 500, 1000, 2000, 3000, 4000, and S@ation
evaluations; Figure 11b shows a similar progres$orneach
user for Trials 5-8 at 500, 1000, 2500, 5000, 7%0@ 10,000
function evaluations. In both figures, solution®nfi the
exhaustive MOGA are also plotted based on its cgaree
history; so, for example, theperformance metric value plotted
at the 500 function evaluation point indicates hawll the
MOGA has found the Pareto frontier by the timeais kexecuted
500 of its 80,000 function evaluations.
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Figure 11. Evolution of Pareto Frontiers in Each Trial
and the Exhaustive MOGA Search

While the results from Table 2 may not have beem to
convincing, Figure 11 clearly illustrates the bénef having
the user “in-the-loop” during the optimization pess. In all
trials, both wusers have substantially out-performéue
exhaustive MOGA in terms of the percentage of sahgtfound
on the Pareto frontier (i.e., the reference seatpfgiven number
of function evaluations. In Figure 11a, the MOGastobtained
fewer than 2% of the Pareto frontier in its fir€l0® function
evaluations compared to 9.3% - 13.9% in Trials l-ikewise,
even when the number of function evaluations hasiéad to
10,000, the MOGA has still found fewer than 3% lu# Pareto
frontier solutions compared to the 12.9% - 22.4%aled in
Trials 5-8 as indicated in Figure 11b. In both esasthis
represents a 4x -7x increase in the number of @a@utions
that are obtained when the human is allowed toaliz® and
“steer” the optimization process. This increaseassistent,
regardless of the combination of visual steeringnoands that
are used or the designer implementing them.

6 CONCLUSIONS AND FUTURE WORK

Trade space exploration is a promising alternate@sion-
making paradigm that provides a visual and moreitine
means for formulating, adjusting, and ultimatelfvsw design
optimization problems. The results of this studglicate that
the visual steering commands — regardless of thibowtion in
which they are invoked — cam provide a 4x -7x iasgein the
number of Pareto solutions that are obtained whermtman is
“in-the-loop” during the optimization process. Asch, this
study provides the first empirical evidence of tenefits that
interactive visualization-based strategies canigmin support
of engineering design optimization and decision-mgk

There are several possible extensions of this work.

Additional metrics should be considered for commgrihe

solutions in the resulting Pareto frontiers in teraf both the
design variables (inputs) as well as the objedtimetion values
(outputs). A multi-metric strategy would be usefulnot only

assessing the goodness of the Pareto frontiers thoreughly
but also providing guidance to users if they wesenputed in
real-time during the trade space exploration prece& more
extensive reference set should also be develope ghe high
dimensionality of the trade space that is being laeg.

Having a more complete reference set would prevant

individual trial from being able to dominate théemrence set (or
any portion thereof); trials would only be ablefited points in

the reference set within epsilon. Finally, thedgtshould also
be repeated with test problems of different sizes @mplexity
as well as with users with different levels of enpece to

demonstrate how widely applicable — and benefieittie trade
space exploration process is.
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APPENDIX

Table A. Specification of Visual Steering Commands for Trials 1-4

Trial 1 (Total Points: 5025)

Trial 2 (Total Points: 5075)

Basic Sampler: 100 runs

Brush objectives 1-5: Minimize
objective 1 (-100), maximize objectives
2-5(100)

Point attractors: 10 possible pair-wise
point attractors for objectives 1-5 set at
the current limits of the scatter plot
window (on objectives [1 & 2], [3 & 4], [5
&1],[2&3],[4&5],[1&3],[2&4],[3&
5], [4&1],[5&2])

Pareto Sampler

Basic Sampler: 500 runs

Brush objectives 1-5: Minimize objective 1 (-100), maximize objectives 2-5 (100)

Pareto Sampler

Line attractors (1-d point attractor): One for each objective 1-5 set at the current limit of the
scatter plot window (minimum of window for objective 1 and maximum of window for objectives
2-5)

Preference Sampler

Point attractors: Set at current limits of the scatter plot window (on objectives [2 & 5], [2 & 4])
Point attractors: Set at the current limits of the scatter plot window, generation size changed to
15 (on objectives [3 & 2], [3 & 4], [1 & 5], [2 & 5])

Point attractor: Set at the current limits of the scatter plot window (on objectives [3 & 5])

Trial 3 (Total Points: 5525)

Trial 4 (Total Points: 5375)

Basic Sampler: 500 runs

Brush objectives 1-5: Minimize
objective 1 (-100), maximize objectives
2-5(100)

Point attractors: Set at the current
limits of the glyph plot window (on
objectives [1, 2, & 3], [1,2,&4],[1,2, &
5],[1, 3, &4],[1,3,&5],[1, 4, &5], [2,
3,&4],[2, 3, &5],[2, 4, &5], [3, 4, & 5])
Pareto Sampler

Basic Sampler: 100 runs

Brush objectives 1-5: Minimize objective 1 (-100), maximize objectives 2-5 (100)

Line attractors (1-d point attractors): Set at the current limits of the scatter plot window (on
objectives 1-5)

Pareto Sampler

Point attractors: Set at the current limits of the scatter plot window, generation size changed to
15 and population limit changed to 250 (on objectives [1 & 2], [1 & 3], [1 & 4], [1 & 5], [2 & 3],
[2&4],[2&5],[3&4],[3&5],[4&D5])

Line attractor (1-d point attractor): Set objective 3 at current limit of the scatter plot window
Point attractors: Set at current limits of the scatter plot window (on objectives [3 & 4], [4 & 5])

Table B. Specification of Visual Steering Commands for Trials 5-8

Trial 5 (Total Points: 10,325)

Trial 6 (Total Points: 10,075)

Basic Sampler: 100 runs

- Basic Sampler: 250 runs

Brush objectives 1-5: Minimize objective 1 (-100), - Brush objectives 1-5 and ConVio: Minimize objective 1 and ConVio (-100),

maximize objectives 2-5 (100)

maximize objectives 2-5 (100)

Point attractors: Set at the current limits of the scatter plot - Preference Sampler: Generation size changed to 50 and population limit

window * 5% for minimizing or maximizing, respectively

changed to 1,000

(on objectives [1 & 2],[2& 3], [3&4],[4&5],[56&1],[1& - Pareto Sampler: Generation size changed to 50 and population limit

3l,[3&5],[56&2],[2&4],[4&1])
Preference Sampler

Point attractors: These specific values were used to fill in
the Pareto frontier (JObj1 = 0.9, Obj2 = 1.102], [Obj1 =
0.645, Obj2 = .872], [Obj2 = 1.144, Obj3 = .988])

Line attractors (1-d point attractors): These specific values

changed to 1,000

- Point attractors: Set at the current limits of the scatter plot window (on
[ConVio & Obj1], [ConVio & Obj2], [ConVio & Obj3], [ConVio & Obj4],
[ConVio & Obj5])

- Pareto Sampler Generation size changed to 50 and population limit
changed to 1,000

were used to fill in the Pareto frontier ([Obj4 = 1.124], - Point attractors: These specific values were used to fill in the Pareto frontier

[Obj5 = 1.191])

Brush (preference): Minimize ConVio (-100)

Preference Sampler
Pareto Sampler

Line attractors (1-d point attractors): One for each
objective 1-5 set at the feasible limit of the objective in the
scatter window (minimum for objective 1 and maximum for

objectives 2-5)
Pareto Sampler

([ConVio = 0, Obj1 = 1.043, Obj2 = 1.2], [ConVio = 0, Obj1 = .755, Obj3 =
1.026], [ConVio = 0, Obj1 = .911, Obj4 = 1.121], [ConVio = 0, Obj1 = .729,
Obj2 = 1.153], [ConVio = 0, Obj2 = 1.126, Obj3 = .993], [ConVio = 0, Obj2 =
1.186, Obj4 = 1.099], [ConVio = 0, Obj2 = 1.154, Obj5 = 1.052], [ConVio =0,
Obj3 = 1.018, Obj4 = 1.123], [ConVio = 0, Obj3 = 1.003, Obj5 = 1.137],
[ConVio =0, Obj4 = 1.121, Obj5 = 1.105], [ConVio = 0, Obj3 = .923, Obj5 =
.993], [ConVio = 0, Obj2 = 1.207, Obj5 = .853])

- Preference Sampler

- Pareto Sampler

- Point attractors: Use these specific values to fill in the Pareto frontier ([Obj1
=.802, Obj2 = .851, Obj3 = 1.007], [Obj3 = 1.003, Obj2 = .854], [Obj1 =
1.073, Obj2 = 1.19], [Obj4 = .995, Obj5 = .824], [Obj3 = .955, Obj4 = 1.119])

- Pareto Sampler: Population limit changed to 250

Trial 7 (Total Points: 10,125)

Trial 8 (Total Points: 10,275)

Basic Sampler: 25 runs

- Basic Sampler: 25 runs

Brush objectives 1-5 and ConVio: Minimize objective 1 - Brush objectives 1-5 and ConVio: Minimize objective 1 and ConVio (-100),

and ConVio (-100), maximize objectives 2-5 (100)

maximize objectives 2-5 (100)

Pareto Sampler: Generation size changed to 50 and - Pareto Sampler: Generation size changed to 50, population limit changed to

population limit changed to 1,000

1,000, and selection strategy changed to Rand1Bin

Preference Sampler: Generation size changed to 50 and - Preference Sampler: Generation size changed to 50, population limit

population limit changed to 1,000

changed to 1,000, and selection strategy changed to Rand1Bin

Repeated Pareto and Preference Samplers in above order - Repeated Pareto and Preference Samplers in above order with the same

with the same settings four more times

Pareto Sampler: Generation size changed to 50 and

population limit changed to 1,000

settings four more times
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