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ABSTRACT1234 
Designers perform many tasks when developing new 

products and systems, and making decisions may be among the 
most important of these tasks.  The trade space exploration 
process advocated in this work provides a visual and intuitive 
approach for formulating and solving single- and multi-
objective optimization problems to support design decision-
making.  In this paper, we introduce an advanced sampling 
method to improve the performance of the visual steering 
commands that have been developed to explore and navigate 
the trade space.  This method combines speciation and 
crowding operations used within the Differential Evolution 
(DE) algorithm to generate new samples near the region of 
interest.  The accuracy and diversity of the resulting samples are 
compared against simple Monte Carlo sampling as well as the 
current implementation of the visual steering commands using a 
suite of test problems and an engineering application.  The 
proposed method substantially increases the efficiency and 
effectiveness of the sampling process while maintaining 
diversity within the trade space. 

1 INTRODUCTION 
Designers perform many tasks when developing new 

products and systems, and making decisions may be among the 
most important of these tasks, given the impact that these 
decisions ultimately have on the product’s or system’s cost, 
performance, time-to-market, etc.  These decisions typically 
involve tradeoffs between competing or conflicting objectives, 
and many designers employ optimization-based approaches and 
techniques to try and help them resolve these tradeoffs. 
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Unfortunately, most designers do not really know their 
preferences when they start this process [1], or perhaps more 
importantly understand the implications of their preferences 
until they have been able to evaluate some preliminary design 
alternatives to form “realistic expectations of what is possible”.  
In fact, Balling [1] has noted that the traditional optimization-
based design process of “1) formulate the design problem, 2) 
obtain/develop analysis models, and 3) execute an optimization 
algorithm” often leaves designers unsatisfied with their results. 

Consequently, we are investigating ways to help designers 
formulate and solve single- and multi-objective optimization 
problems in a more visual and intuitive manner.  This process, 
which we refer to as trade space exploration, is an embodiment 
of the Design by Shopping paradigm advocated by Balling [1]: 
designers want to be able to “shop” for the best design, to gain 
intuition about trades, to see what is feasible and what is not, 
and to learn about their alternatives first before making a 
decision.  Our trade space exploration process combines a 
multidimensional data visualization tool – the Applied Research 
Laboratory’s Trade Space Visualizer, or ATSV [2] – along with 
visual steering commands [3,4] to put designers “back-in-the-
loop” when performing design optimization.  For example, 
designers can now sample new designs near any point or region 
of interest within the trade space by placing one or more 
attractors directly within the visualization interface.   

In this paper we introduce a new attractor-based sampling 
strategy to bias the sampling near the point or in the region of 
interest in either the design space or the performance space 
while simultaneously maintaining diversity throughout the 
remainder of the trade space.  The next section reviews related 
work, including the current implementation of our visual 
steering commands.  In Section 3, we present an advanced 
sampling method to improve on the performance of attractor-
based samplers.  Section 4 describes a parameter robustness 
study of the proposed method, and Section 5 compares its 
performance on a set of test problems.  Section 6 summarizes 
the key findings from this work and identifies future work. 
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2 RELATED WORK 
Interactive optimization-based methods fall mainly into the 

area of computational steering whereby users (e.g., designers) 
interact with a simulation model during the optimization 
process to help “steer” the search process toward an optimal 
solution, as supposed to relying on the algorithm to locate an 
optima based solely upon the user’s initial preference.  The 
designer observes a visual representation of the optimization 
process and then uses intuition, heuristics, or some other 
method to adjust the design space to move toward something 
that may not have been intuitive at the beginning of the 
simulation.  For instance, Wright, et al. [5] applied 
computational steering methods to the geometric and material 
design of glass for a furnace.  Kesavadas and Sudhir [6] created 
large-scale manufacturing “simulations on the fly” by allowing 
users to make quick changes and continue with the simulation.  
Messac and Chen [7] proposed an interactive visualization 
method based on Physical Programming [8], where the progress 
of the optimization is visualized - but not steered - throughout 
the design process, not just at the beginning and end.  Likewise, 
Visual Design Steering and Graph Morphing [9-11] allow users 
to stop and redirect the optimization process to improve the 
solution; however, their visualization capabilities are limited to 
2-D and 3-D representations of constraints and objectives. 

As problem dimensionally increases, however, methods and 
tools are needed to help designers explore the trade space more 
effectively, formulate their preferences and identify the best 
design.  Toward this end, visual steering commands [4] have 
been created to help designers navigate large, multi-dimensional 
trade spaces.  We generally classify these visual steering 
commands as attractors, repellers, and spreaders based on their 
functionality: attractors/repellers bias sampling toward/away 
from the point or region of interest, while a spreader attempts to 
sample new designs uniformly over the entire region of interest.  
The remainder of this paper will focus specifically on 
improving the performance of attractors; however, we anticipate 
that our approach will be generalizable, enabling similar 
improvements for repellers and spreaders. 

Sampling the output/resulting trade space with attractors 
can be considered as a special case of the inverse problem [12].  
In the physical sciences, an inverse problem is typically defined 
to solve for the unobservable values that can be attributed to a 
set of observable values [13].  Inglese [14] solves an inverse 
problem that detects unobservable corrosion based upon 
measurements at an accessible location.  In engineering design, 
inverse models are often created to allow designers to identify 
the necessary design parameters to yield a specific set of 
specifications.  For instance, Moreau et al. [15] present a 
method to determine the initial temperature distribution 
necessary to post-creep glass dimensions to specification.  Lu et 
al. [16] present a Backward Mapping Methodology for Design 
Synthesis that breaks the design space into feature-based sub-
regions and then fits linear approximations between the each 
sub-region and each performance variable. This decomposition 

process allowed the methodology to be applied to non-linear 
and many-to-one (non-invertible) mappings.  Barton et al. 
[12,17] present a forward-inverse metamodeling technique that 
attempts to minimize the number of functional evaluations 
required to generate an adequate representation of both the 
forward and inverse models.  The goal of their approach is to 
optimize the selection of design points so that an optimal 
inverse metamodel can be generated, but their research focuses 
only on invertible problems with a single performance variable.   

Finally, Stump et al. [4] introduced an attractor-based 
sampler controlled by an evolutionary algorithm known as 
Differential Evolution (DE) [18].  Their strategy utilizes the 
distance to the attractor as the fitness metric in DE to drive 
samples toward the attractor.  Stated more formally, the designer 
creates an attractor vector φ when s/he places an attractor in the 
trade space.  This specifies the location to bias exploration (i.e., 
the generation of new sample points) within a region of the 
trade space.  The resulting objective function for the attractor is: 

 i i
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where X is a n-dimensional design vector with bounds [ai,bi] 
and Y is a m-dimensional performance vector, which combines 
to form the (n+m)-dimensional trade vector Z.  φ is the k-
dimensional attractor vector where k < (n+m). 

Figure 1 demonstrates the performance of this DE-based 
attractor for the example 
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where x and y vary between [0,1] with an attractor φ placed at 
f(x,y) = 0.  As a result, Eq. (1) becomes:  

 Minimize |f(x,y) – 0| (3) 

This process effectively “paints” the trade space around the 
attractor, allowing preference to be specified only in a limited 
subset of the trade space while randomly exploring the 
unspecified objective(s).  The current implementation of the DE 
algorithm [4] scales in both attractor and trade vector size, but it 
is designed to solve single-objective problems, i.e., it will 
converge to the first point that reaches the attractor.  Figure 1a 
and Figure 1b show the performance of the resulting line 
attractor in the design space and objective space, respectively, 
after covering to the attractor in 175 function evaluations (FEs).  
Figure 1c and Figure 1d show the same results after 2000 FEs, 
which represents 10 independent runs of the DE algorithm.  
These subsequent runs do not incorporate any information 
learned previously, which limits the effectiveness of this 
approach.  The modifications proposed in the next section seek 
to overcome this limitation by employing techniques from 
multimodal optimization.  These techniques allow the algorithm 
to paint the trade space around the attractor in a single run, 
which will improve the algorithm’s efficiency and effectiveness. 
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(a) Design Space – 175 FEs (b) Objective Space – 175 FEs 

  
(c) Design Space – 2000 FEs (d) Objective Space – 2000 FEs 

Figure 1. DE-based Attractor Example (Attractor at f(x,y)=0) 

 
3 PROPOSED METHOD 

We introduce a new method for Advanced Sampling by 
Differential Evolution (ASDE) to improve the performance of 
the DE-based attractor.  The ASDE biases new samples toward 
the user-specified attractor while continuing to explore 
dimensions for which no preference has been specified.  The 
proposed ASDE algorithm combines the traditional DE 
algorithm with a speciation strategy from Li [19] and a 
crowding strategy from Thomsen [20], tailored for 
implementation within our visualization software.  The 
remaining sections describe the key operators and discuss 
strategies for setting parameters for trade space exploration. 

3.1 Mutation and Mating 
There are many DE mutation schemes in the literature.  The 

strategy DE/rand/1/exp is popular for multi-objective 
optimization problems [19,20] and is utilized for this research.  
We refer the reader to [21] for a detailed comparison of this 
strategy to other mutation strategies.  This strategy works by 
selecting 3 random parents and recombining them in various 
fashions in order to generate a child.  Equation (4) demonstrates 

this approach, with a mutated vector ,i θV  [21]: 

 ( )
0 1 2, , , ,i r r rFθ θ θ θ= + × −V X X X , (4) 

where F ∈ (0,1) is a user-defined scale factor and Xri, θ is the 

randomly selected individual from the current species θ where 
Xi,θ where i ∈ {1,…,NP}. 

After a mutated vector Vi,θ  is generated, it is mated with a 
parent population member Xi,θ through a cross-over strategy.  A 
starting point i is selected and the probability of cross-over is 
the user-defined parameter, CR.  If cross-over is successful, then 
the i th gene of the mutated vector Vi,θ is swapped with the i th 

gene of parent vector, Xi,θ.  Then, i is indexed, and the process 
is repeated until the cross-over is unsuccessful or the end of the 
gene is reached, at which point the mating process stops.   

After cross-over, the feasibility of the generated child must 
be assessed.  Mezura-Montes et al. [22] and Lampinen et al. 
[23] present three selection criteria rules for handling selection 
between infeasible solutions.  For this problem, we want to 
make sure that no sample is “wasted” due to infeasibility; 
therefore, a simple repair algorithm was developed to guarantee 
feasibility of all children.  If a proposed child is infeasible, then 
each infeasible dimension is made feasible by multiplying the 
distance from Xro,g  in Eqn. (4) to the boundary by a uniform 

U[0,1] random number and adding this distance to Xro,g .  This 
ensures feasibility and attempts to keep points from collecting 
on the feasible boundary. 

3.2 Speciation 
A technique to locate multiple optima is speciation used by Li 
in the development of his species-based DE (SDE) [19]. 
Speciation is a niching mechanism whereby the algorithm’s 
population is grouped based on Euclidean distance in the design 
space.  In DE, speciation keeps the randomly chosen members 
used for mating and mutation similar to those within the 
species.  This effectively limits the algorithm’s step-size to the 
neighborhood of each individual species, reducing selection 
pressure for the global population.   

At the beginning of each iteration, the entire population, of 
size µg, where: 

 
1
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NS is the number of species and NPi is the population of species 
i, is sorted based on fitness, and the fittest member is selected to 
be a species seed.  The next individual’s distance to the seed is 
checked, and if it falls within a user-specified radius rθ from the 
seed, then it is considered to be part of that species; otherwise, 
it is set to be another species seed.  This is repeated for all NPi 
individuals in the population. 

Once the species are established, a check is done to ensure 
that each species has at least β individuals.  In DE, β is usually 
set to a number greater than or equal to 3 because DE requires 3 
or more individuals within each species to implement its 
mutation and cross-over operators.  If there are not enough 
individuals, then new individuals are randomly created within 
the species radius until at least β individuals exist. 

Adding individuals to the species could potentially create a 
population larger than µg, but if this is the case, only µg total 
individuals are selected to be species seeds and members of a 
species. Another potential problem is that some species may 
converge more quickly than others, which may yield redundant 
individuals.  To combat this problem, whenever an individual is 
created it is checked against the other individuals within the 
current species.  If it is a copy, then it is replaced by a new 
random individual [19]. 
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Specifying the radius rθ requires problem-specific 
knowledge that can impact the algorithm’s performance; 
moreover, it can be difficult to interpret from a user perspective.  
If rθ is too small, then each population member will become its 
own seed, generating a total of β total species.  Each species 
will then need to be increased to NS members to ensure that the 
DE strategy can perform.  Li [19] suggests randomly generating 
these extra members, which can lead to a random-walk 
condition as (β-1) randomly-generated individuals compete 
with the species seed (worst-case).  This leads to a total of     
(β-1)NP randomly-generated individuals in a given population.  

The ASDE algorithm eliminates the radius, rθ, parameter 
and replaces it with the species parameter, NS, which is more 
intuitive to the user, since it directly corresponds to the desired 
amount of diversity in the search space.  By specifying NS and 
NP, the user is generating a total of µg parents in each 
generation, where µg = NP x NS.  This also eliminates the need 
for the β parameter since all species will have NP members.   

For ASDE, the defining member of each species is its 
species seed.  The species seed will have the highest fitness of a 
given species, and the membership of each individual is 
determined solely on that individual's location with respect to 
the species seed.  Figure 2 describes the layout of the ASDE 
algorithm for generating species. 
 

 

Figure 2. ASDE Algorithm for Generating Species 

This algorithm begins with a empty set of species γ.  It 
takes L as an input, which is the collection of surviving 
individuals from all species in the previous generation.  L is 
sorted by fitness and placed in Lfit.  The individual with highest 
fitness, Xo, is removed from L and becomes the first species 
seed, Xseed.  Ldist is defined as L, sorted in increasing Euclidean 
distance to Xseed.  At this time, the first NP-1 elements of Ldist 
are inserted into species θ, while being removed from L .  
Species θ is added to the set of species γ, Lfit is resorted from 
the remaining members of L, and the process is repeated until 
there are NS total species in γ, each with NP individuals. 

3.3 Crowding 
Another multimodal optimization technique that can be 

used to maintain diversity in the population is crowding [20].  
Crowding encourages exploration of the trade space, increasing 
the probability of converging to multiple optima.  It achieves 
this by only allowing a newly generated offspring Xo to 
compete with the individual Xi that is most similar to it.  
Thomsen [20] defines similarity by Euclidean distance in the 
design space, but a performance space-based implementation 
can also be employed.  This offspring will then replace Xi in the 
next generation if it has a better fitness.  The pool of individuals 
that Xi is chosen from is a random subset (crowd) of the 
population with a crowd size set by the crowding factor (CF); 
usually taken to be a small number such as 2 or 3. 

Due to the CF usually being set to a low number, crowding 
has been known to experience a problem called replacement 
error, where the offspring replaces an individual that is not 
similar to it [20].  ASDE combats this by setting CF equal to the 
population size, NP, guaranteeing that it replaces the most 
similar individual in the population.  This increases runtime, but 
this is usually insignificant when compared to time needed for 
fitness evaluation. 

3.4 Complexity 
The computational complexity of the resulting ASDE 

algorithm is determined by the number of sorting operations 
and the total population size.  For each generation, there is one 
sort by fitness (Lfit) and NS sorts by distance (Ldist). For each 
Ldist calculation, a total of (NP-1) distance calculations are 
required.  This gives a computational complexity for speciation 
of ϑ(NS(NP-1)), which is similar to the results found by Li [19], 
but with a fixed number of species, the run-time is more easily 
controlled by specifying the parameters NP and NS. 

Meanwhile, each new individual must be compared to NP 
individuals in order to determine its closest neighbor for the 
crowding operator.  This requires a total of NS x NP(NP-1) 
comparisons for each generation. The overall computational 
complexity of this algorithm is ϑ(µg(NP-1)), which is smaller 
than Thomsen's ϑ(µg

2) for crowding [20], but is larger than Li's 
ϑ(µg x NS) for speciation [19] since typically NS < NP. 

4 ASDE PARAMETER ROBUSTNESS STUDY 

4.1 Experimental Set Up  
A robustness study was conducted to understand the 

sensitivity of parameter selection and tuning of the proposed 
algorithm for ASDE.  The factors (and levels) of interest are: 

• NP: Species Population Size (10,15,20,25) 
• NS: Number of Species (5,10) 

The scale factor F and the cross-over ratio CR were set to 0.5 
and 0.9, respectively, based on Price's guidelines [24] and 
testing by both Li [19] and Thomsen [20].  The testing range for 
NP and NS were selected in order to gain insight into the best 
makeup of a generation for a given number of functional 
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evaluations (i.e., a generation is defined by NP x NS).  Each test 
executes 5000 functional evaluations, which correspondingly 
ranges to 20 (for NP=25 and NS=10) to 100 (for NP =10 and 
NS = 5) total generations. 

For each run, the effect of attractor location is addressed by 
varying the placement of the attractor at four different locations 
in the performance space between [0,1] (normalized by the 
maximum).  While a k-dimensional attractor can consist of any 
combination of design and performance variables, this study 
will focus on performance-space attractors because design-
space attractors are problem invariant, and trivial to implement.  
Of special interest is the algorithm’s performance when the 
attractor is located at the boundary of performance feasibility, 
since all observations will be strictly greater/less than the 
specified attractor.  In addition, three seeds are selected for 
random number generation for each run, with the results being 
averaged to account for randomness in the algorithm.   

An initial set of 8 functions from the Walking Fish Group 
(WFG) test suite [25] were selected to be representative of 
multi-objective engineering design problems.  The WFG suite is 
completely scalable in both number of allowable design and 
performance variables.  Design variables are allocated as either 
position or distance variables.  Position variables define a 
Pareto Front; their modification generates additional points 
about the same front.  Distance variables move the Pareto Front; 
their modification either dominates or is dominated by the 
original point.  By increasing the number of position 
parameters, the number of unique designs that map to a single 
performance vector increases, creating a many-to-one Pareto 
mapping, allowing for multiple design vectors to correspond to 
a single performance vector.  Table 1 summarizes the features of 
the 8 WFG test problems used in this first study.  Note that two 
problem sizes are considered, representing “small” (5 inputs, 2 
outputs) and “medium” (15 inputs, 2 outputs) engineering 
design problems.  Half of the problems are unimodal while the 
other half have multiple local optima that can trap an algorithm 
into false Pareto Fronts.  Finally, the problems are also evenly 
divided between one-to-one mappings and many-to-one 
mappings.  Executing each combination of NP and NS on each 
test problem yields a total of 768 runs (8 test problems x 8 
combinations x 4 attractor locations x 3 random seeds). 

4.2 Performance Metrics 
For this parameter robustness study, the performance of 

each parameter combination is measured for its (1) accuracy – 
the ability to generate points near the specified attractor, and (2) 
diversity – the ability to spread points about the non-attracted 
variables in the design space.  In a traditional multi-objective 
optimization algorithm, accuracy is often measured based on 
the distance of the generated set of non-dominated points to a 
known Pareto-optimal set [26,27].  Since optimization is not the 
intention of the ASDE algorithm, we use an average distance 
metric, ϒ, to measure the average distance of all n designs to the 
user-specified attractor: 
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, (7) 

where Y and φ are the normalized [0,1] values used to ensure 
each dimension in the performance space is equally weighted. 

The diversity metric, H, is based on Shannon's Entropy 
metric [28], which measures how evenly spaced the points are 
throughout the region of interest: 
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where ρi represents the density of the i th of N bins.  For this 
experiment, the number of bins is taken as N = n1/2.   

Variations of this metric are commonly used for testing the 
diversity of multi-objective optimization algorithms [26,27].  
For attractor-based sampling, the goal is to measure the spread 
of all samples about the attractor; therefore, the diversity metric 
H is calculated for each non-attracted design variable 
individually and then averaged for each test problem and 
normalized by ln(N), which represents the greatest possible 
diversity for a given number of bins. 

 

Table 1. Features of WFG Test Problems for Robustness Study 

Problem  Function  Mode Size Mapping 
1 WFG8 Unimodal [5,2] One-to-One 
2 WFG8 Unimodal [5,2] Many-to-One 
3 WFG8 Unimodal [15,2] One-to-One 
4 WFG8 Unimodal [15,2] Many-to-One 
5 WFG9 Multimodal [5,2] One-to-One 
6 WFG9 Multimodal [5,2] Many-to-One 
7 WFG9 Multimodal [15,2] One-to-One 
8 WFG9 Multimodal [15,2] Many-to-One  

4.3 Results of ASDE Parameter Robustness Study 
Assuming that the given problem is a black-box model, 

then the only information known a priori is the size of the 
design and performance vectors, and the intended steering 
command (in this case, a 1-D attractor placed in the 
performance space).  Other information, such as the modality 
and mapping of the problem will seldom be known, at least not 
until many samples have been taken [28].  Therefore, the 
analysis was completed by problem size, and the effect of the 
tuning parameters for attractor location, modality and mapping 
was determined.   

The results are plotted in the Appendix.  The effects of NP 
and NS on the accuracy and diversity are plotted separately in 
Figure A for the “small” (n = 5) and “medium” (n = 15) WFG 
test problems.  Regardless of problem size, NP = 10 and NS = 5 
perform the best, and these settings dominate all other settings 
with respect to the accuracy metric.  This corresponds to an 
exploiting algorithm setting, where a small population drives 
the sampling quickly to the attractor.  While accuracy was worst 
when the attractor was near the boundaries, these settings still 
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performed the best, relative to the other settings.  For the 
diversity metric, NP = 25 and NS = 10 performed the best 
across all problem types, which corresponds to an exploring 
setting.  This result is intuitive, since there is more diversity in 
the population as NP and NS increase; hence, there is more 
exploration of the trade space.  However, the difference 
between average diversity of settings [NP,NS] = [25,10] and 
settings [NP,NS] = [10,5] is only 3%, while the difference of 
accuracy at these settings is 25%.  Therefore, based on this 
analysis, [NP,NS] = [10,5] are recommended. 
 
5 DETAILED ASSESSMENT OF ASDE 

Having identified robust parameter settings for the ASDE 
algorithm, we can now test its performance on different 
problems and compare it against other sampling methods.  We 
use the accuracy and diversity metrics from Section 4.2 to 
assess the performance of ASDE in each case.   

5.1 Test Problems for Detailed Assessment Study 
The ASDE algorithm is now tested on all 9 functions in the 

WFG test suite [25] with levels: 
• Problem Size: [5,2],[15,2] 
• Mapping: Many-to-One, One-to-One 

As in the parameter robustness study, the scale factor F and 
the cross-over ratio CR were set to 0.5 and 0.9, respectively, 
and the values of NP and NS were set to 10 and 5, respectively 
based on the results of the robustness study.  For the Many-
to_One problems, all but 2 inputs are designated as position 
variables.  For the One-to-One problems, 1 input is designated 
as a position variable.  Each test is run for 5000 functional 
evaluations, and the effect of attractor location is addressed by 
positioning the attractor at 4 different locations between [0,1] 
(normalized by the maximum), and three seeds were selected 
for random number generation for each run, with the results 
being averaged.  These results are compared to the baseline 
algorithm of simple Monte Carlo sampling over the trade space.  
The results are discussed and analyzed in Section 5.2. 

An engineering application is also tested (see Table 2).  
This application is a vehicle configuration model that was 
developed previously to evaluate the technical feasibility of new 
vehicle concepts [29] and to demonstrate the visual steering 
commands initially proposed by Stump et al. [4].  The model 
consists of 11 inputs (ten continuous and one discrete) and 7 
outputs (total constraint violation, mass, and five objectives).  
The ten continuous inputs define vehicle geometric variables 
and are normalized to [0,1] against the baseline model to 
protect the proprietary nature of the data; H defines the 
powertrain and can take one of six options: [1,2,3,4,5,6].  
Feasible designs are those with no constraint violation 
(ConVio=0), and the preference for each objective is indicated 
in the table.  In order to compare results to previous ones, we 
used the same attractor location: [Obj1,Obj2]=[0.847,1.127].  
Results are discussed in Section 5.3.  

 

Table 2: Vehicle Problem Definition 

Model Inputs 
Variable Lower Bound Upper Bound 

A 0 1 
B 0 1 
C 0 1 
D 0 1 
E 0 1 
F 0 1 
G 0 1 
H 1,2,3,4,5, or 6 
I 0 1 
J 0 1 
K 0 1 

Model Outputs 
ConVio 0 � feasible > 0 � infeasible 
Mass Baseline = 1 Defines weight class 
Obj1 Baseline = 1 Smaller is better 
Obj2 Baseline = 1 Larger is better 
Obj3 Baseline = 1 Larger is better 
Obj4 Baseline = 1 Larger is better 
Obj5 Baseline = 1 Larger is better  

5.2 Performance of ASDE on WFG Test Problems 
Figure 3 summarizes the percent change of ASDE for the 

WFG test problems as compared to simple Monte Carlo 
sampling.  As expected, ASDE significantly outperforms MC 
sampling with respect to the accuracy metric, but at the cost of 
diversity.  However, the median loss of diversity is only 9% 
while the median gain in accuracy is 65%.  The One-to-One 
problems had a higher accuracy improvement, with a mean gain 
of 72% vs 60% for Many-to-One problems.  ASDE’s 
performance is relatively invariant to mapping, but the MC 
sampling performs about 16% worse with the Many-to-One 
problems.  This can be attributed to a significant bias caused by 
the Many-to-One mapping which decreased the probability of 
randomly sampling near the placed attractors.  There was no 
significant difference in diversity with respect to problem 
mapping for either ASDE or simple MC sampling. 
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Figure 3. Percent Difference in Accuracy (top) and Diversity 

(bottom) of ASDE compared to Monte Carlo Sampling for All 
WFG Test Problems 
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Figure 4 demonstrates the effect of tuning-parameter 
selection on ASDE’s diversity.  It shows a 2-D histogram of 
design variable Z1 vs. performance variable F1.  The test 
function that performed the worst, where the diversity loss was 
nearly 40%, was WFG1 when the attractor was placed at [φ: 
F1=2.75] which was the upper bound of feasibility for F1 (see 
Figure 4a).  This is a circumstance where increasing exploration 
through tuning would be beneficial. For example, if this test was 
run with tuning parameters [NP,NS] = [25,10], then the 
diversity is improved as seen in Figure 4b.  Under this 
circumstance, by increasing ASDE's exploration capability 
through tuning, the gain in accuracy (as compared to MC 
sampling) decreases from 70% to 36%, but the reduction in 
diversity is only 4% (vs. 7%) of the MC. 
 

  
(a) Exploitation Strategy (b) Exploration Strategy 

Figure 4. Effect of Tuning Parameter Selection on WFG1 with an 
Attractor Placed Outside the Feasible Region [φ: F1=3.0] 

 
Figure 5 visually demonstrates the ability of ASDE to bias 

sampling to various attractor locations for WFG4 with [n=5] 
and a many-to-one mapping.  Note that the attractor location is 
indicated by the vertical plane shown in each plot, and the 
height of each column indicates the number of samples within 
this particular region of the two-dimensional histogram.  The 
axes represent design variable Z1 and performance variable F1.  
While Monte Carlo sampling is effective at spreading points 
across F1 (see Figure 5a), ASDE can bias sampling toward 
specific regions of interest.  For instance, Figure 5e shows that 
ASDE can effectively sample two regions simultaneously by 
adjusting the sampling of each design variable in X.   

A comparison of the final distribution of each design 
variable in X is shown in Figure 6. The speed of ASDE in 
locating an attractor can be seen in a time-series of 2-D 
histograms in Figure 7.  Figure 7a shows the initial exploration 
of ASDE, as the search space is sampled broadly in order to 
locate points near the attractor.  By 1000 FEs, the algorithm has 
already begun biasing samples towards the attractor.  There is 
no discernable change in the sampling from the 1000 to 2000 
FEs interval (see Figure 7b) to the 4000 to 5000 FEs interval, 
(see Figure 7c).  By 2000 FEs, ASDE has exploited the region 
around the attractor, and relatively few samples are generated 
away from it.  However, there is a cluster of points generated 
near [Z1=1.0], which maintains active sampling throughout the 
entire time-series, even though it is not near the attractor of 
interest.  This demonstrates the balance of exploration and 

exploitation, as a species is located in that region every 
generation in an effort to find new and potentially better 
solutions.  As NS is decreased, the effect of these “rouge” 
species decreases, at the risk of completely missing alternate 
regions of interest along the attractor. 
 

   
(a) Simple Monte 
Carlo Sampling 

(b) ASDE - Attractor: 
[φ: F1=0.25] 

(c) ASDE - 
Attractor: [φ: 

F1=2.75] 
Figure 5. Examples of Attractor Placement and Resulting Sample 

Distribution for WFG4 (n=5, many-to-one mapping) 

  

(a) Simple Monte Carlo Sampling (b) ASDE - Attractor: [φ: F1=2.75] 

Figure 6. Histogram of Sample Distributions for All Dimensions 
for WFG4 (n=5, many-to-one mapping) 

   
(a) 0 to 1000 FEs (b) 1000 to 2000 FEs (c) 4000 to 5000 FEs 

Figure 7. Evolution of Sample Points by Number of Function 
Evaluations (FEs) for WFG4 (n=5, many-to-one mapping) and 

Attractor at [φ:F1=2.75].  

5.3 ASDE on Engineering Application 
Five trials are run using the original DE-based point 

sampler [4], and five are run using ASDE for the vehicle 
configuration model.  Each trial is allowed to run for 5000 

cxc242
Comment on Text
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function evaluations by setting the Population Limit for ASDE 
to 5000 and looping the DE-based point sampler until it uses 
5000 function evaluations.  Each of the five ASDE trials and 
each DE-based point sampler trial are very similar to one 
another, and Figure 8 and Figure 9 are representative of the 
results from these five runs.  Using the default settings for the 
DE-based point sampler and [NP, NS] = [10,5] for ASDE yields 
more diversity in DE-based point sampler results but the ASDE 
results are more accurate, i.e., closer on average to the user-
specified attractor. 

 

  

(a) ASDE Sampler - Run 1 (b) DE-based Point Sampler - Run 2 

Figure 8. Representative Scatter Plots of ASDE Sampler and DE-
based Point Sampler 

  

(a) ASDE Sampler - Run 1 (b) DE-based Point Sampler - Run 2 

Figure 9. Corresponding 2D Histograms of ASDE Sampler and 
DE-based Point Sampler 

Figure 10 shows how the accuracy and diversity metrics 
evolve with the number of function evaluations for each trial.  
For all of the trials, both metrics start off close to one another 
for the two samplers; however, the metrics for the DE-based 
point sampler remain nearly constant during all 5000 function 
evaluations.  Meanwhile, the ASDE sampler becomes more 
accurate as the number of function evaluations increase but at 
the sacrifice of diversity.  This is likely happening because each 
time the DE-based point sampler converges to the attractor it 
restarts with no memory of its previous search.  The ASDE 
sampler, on the other hand, takes longer to find the attractor, but 
once it does, it continues to find points near the attractor.  As 
discussed in Section 5.2, the performance of ASDE can be 
modified by adjusting [NP, NS] to meet the user's needs, 
tailoring the algorithm to the specific problem as needed. 

 
(a) Diversity vs. Functional Evaluations 

 
(b) Accuracy vs. Functional Evaluations 

Figure 10. Evolution of Diversity and Accuracy of ASDE  
and DE-based Point Sampler for Each Run 

6 CLOSING REMARKS AND FUTURE WORK 
The proposed ASDE algorithm extends DE through 

modified speciation and crowding to explore a trade space more 
efficiently and effectively.  This is in contrast to the traditional 
DE strategy, which seeks to converge to a single optimum 
(single objective) or Pareto set (multi-objective).  In doing so, it 
provides useful information to designers, allowing them to form 
their preferences as they learn about what is realistically 
feasible versus forcing them to state their preferences a priori. 

A parameter robustness study was performed to determine 
the effect of parameter selection on the performance of the 
ASDE algorithm.  The study found that under most conditions a 
single parameter setting provides the best accuracy with 
minimal loss in diversity.  A detailed study compared the 
performance of ASDE to simple Monte Carlo sampling using 
the WFG test suite [25] and found that ASDE was effective in 
accurately locating the attractor with minimal diversity loss. 
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Finally, ASDE was compared to a DE-based point sampler 
[4] on an existing vehicle configuration model.  ASDE was able 
to outperform the DE-based point sampler in terms of accuracy 
by continuing to explore regions near the attractor without 
repeatedly restarting the algorithm after convergence.  This 
restarting gave the DE-based point sampler an advantage in 
terms of diversity, resulting from the randomness with which 
new populations are created each time the algorithm restarts.   

ASDE does not currently employ a species convergence 
strategy to ensure that new and unique points are continually 
generated.  For future work, a strategy to monitor and address 
species pre-convergence is needed.  In addition, methods to 
modify NP and NS “on the fly” should be investigated to allow 
designers to maintain and fine-tune the extent to which ASDE 
explores the trade space versus exploits new knowledge as it is 
gained.  Additional studies using design-space attractors, 
combined design/performance space attractors, and “large” test 
problems with high dimensionality (e.g., 50+ inputs) and more 
than two objectives should be evaluated to further assess the 
robustness of the ASDE algorithm.  Finally, research into 
seeding ASDE with promising designs selected by the user will 
provide the user with more direct control of the search process 
and could improve the algorithm’s efficiency and effectiveness. 
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APPENDIX RESULTS FROM PARAMETER ROBUSTNESS STUDY 
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