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Unfortunately, most designers do not really knowirth

Designers perform many tasks when developing new preferences when they start this process [1], ohgpes more

products and systems, and making decisions maynoagthe
most important of these tasks. The trade spacéomtipn
process advocated in this work provides a visudl iatuitive
approach for formulating and solving single- and Itmu
objective optimization problems to support desigtision-
making. In this paper, we introduce an advancedp$iag
method to improve the performance of the visuakritg
commands that have been developed to explore avigata
the trade space. This method combines speciatimh a
crowding operations used within the Differential diixtion
(DE) algorithm to generate new samples near théomegf
interest. The accuracy and diversity of the r@sgilsamples are
compared against simple Monte Carlo sampling a$ agethe
current implementation of the visual steering comdsausing a
suite of test problems and an engineering apptinati The
proposed method substantially increases the effigieand
effectiveness of the sampling process while maiiigi
diversity within the trade space.

1 INTRODUCTION

Designers perform many tasks when developing new

products and systems, and making decisions mayrnoagthe
most important of these tasks, given the impact thase
decisions ultimately have on the product’s or sy&ecost,
performance, time-to-market, etc. These decisitypscally
involve tradeoffs between competing or conflictioigjectives,
and many designers employ optimization-based aphssaand
techniques to try and help them resolve these ofésle
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importantly understand the implications of theireferences
until they have been able to evaluate some pretinginlesign
alternatives to form “realistic expectations of wisapossible”.
In fact, Balling [1] has noted that the traditioregdtimization-
based design process of “1) formulate the desigiblpm, 2)
obtain/develop analysis models, and 3) executepéimization
algorithm” often leaves designers unsatisfied \ligir results.

Consequently, we are investigating ways to helpgdess
formulate and solve single- and multi-objective imiation
problems in a more visual and intuitive manner.isTgrocess,
which we refer to aade space exploratigns an embodiment
of the Design by Shopping paradigm advocated byirigg]1]:
designersvant to be able to “shop” for the best design, dog
intuition about trades, to see what is feasible whdt is not,
and to learn about their alternatives first befonaeking a
decision. Our trade space exploration process owsba
multidimensional data visualization tool — the Aipdl Research
Laboratory’s Trade Space Visualizer, or ATSV [2hleng with
visual steering commands [3,4] to put designersKha-the-
loop” when performing design optimization. For exde,
designers can now sample new designs near any @oiagion
of interest within the trade space by placing omenwre
attractorsdirectly within the visualization interface.

In this paper we introduce a new attractor-basadpag
strategy to bias the sampling near the point dhinregion of
interest in either the design space or the perfocmaspace
while simultaneously maintaining diversity throughothe
remainder of the trade space. The next sectioewsvrelated
work, including the current implementation of ouisual
steering commands. In Section 3, we present amredd
sampling method to improve on the performance trhetor-
based samplers. Section 4 describes a paramdiestness
study of the proposed method, and Section 5 coraptse
performance on a set of test problems. Sectionntarizes
the key findings from this work and identifies freuvork.
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2 RELATED WORK

Interactive optimization-based methods fall mainiy the
area ofcomputational steeringvhereby users (e.g., designers)
interact with a simulation model during the optiatibn
process to help “steer” the search process towardpgimal
solution, as supposed to relying on the algoritbmotate an
optima based solely upon the user’s initial prafees The
designer observes a visual representation of thenization
process and then uses intuition, heuristics, or esasther
method to adjust the design space to move towamtktong
that may not have been intuitive at the beginnirfgthe
simulation. For instance, Wright, et al. [5] apgl
computational steering methods to the geometric raatkrial
design of glass for a furnace. Kesavadas and E[@]tdreated
large-scale manufacturing “simulations on the thy allowing
users to make quick changes and continue withithalation.
Messac and Chen [7] proposed an interactive vizakidin
method based on Physical Programming [8], wherg@tbgress
of the optimization is visualized - but not steereithroughout
the design process, not just at the beginning add &ikewise,
Visual Design Steering and Graph Morphing [9-11pwlusers
to stop and redirect the optimization process tprave the
solution; however, their visualization capabilitize limited to
2-D and 3-D representations of constraints andobivges.

As problem dimensionally increases, however, mettzoul
tools are needed to help designers explore the spdce more
effectively, formulate their preferences and idignthe best
design. Toward this end, visual steering commddfisave
been created to help designers navigate largei-dinlensional
trade spaces. We generally classify these vistedriag
commands as attractors, repellers, and spreadeesl loan their
functionality: attractors/repellers bias samplingward/away
from the point or region of interest, while a sptemattempts to
sample new designs uniformly over the entire regibimterest.
The remainder of this paper will focus specificalyn
improving the performance of attractors; howeves,amticipate
that our approach will be generalizable, enablingilar
improvements for repellers and spreaders.

Sampling the output/resulting trade space withaattrs
can be considered as a special case of the ingesbéem [12].
In the physical sciences, an inverse problem ik&fy defined
to solve for the unobservable values that can tibatied to a
set of observable values [13]. Inglese [14] solaasinverse
problem that detects unobservable corrosion basedn u
measurements at an accessible location. In engigegesign,
inverse models are often created to allow desigteeidentify
the necessary design parameters to yield a spesdficof
specifications. For instance, Moreau et al. [15¢sent a
method to determine the initial temperature distiin
necessary to post-creep glass dimensions to spee@ifn. Lu et
al. [16] present a Backward Mapping Methodology Besign
Synthesis that breaks the design space into fehaged sub-
regions and then fits linear approximations betwten each
sub-region and each performance variable. Thisrdposition

process allowed the methodology to be applied to-lmzar
and many-to-one (non-invertible) mappings. Bartemn al.
[12,17] present a forward-inverse metamodeling nepke that
attempts to minimize the number of functional ewtibns
required to generate an adequate representatidoothf the
forward and inverse models. The goal of their apph is to
optimize the selection of design points so that ogmimal
inverse metamodel can be generated, but their naséacuses
only on invertible problems with a single perforroarvariable.
Finally, Stump et al. [4] introduced an attractesbd
sampler controlled by an evolutionary algorithm mo as
Differential Evolution (DE) [18]. Their strategytilizes the
distance to the attractor as the fithess metri©kh to drive
samples toward the attractor. Stated more formtdléydesigner
creates an attractor vectpiwhen s/he places an attractor in the
trade space. This specifies the location to bigdoeation (i.e.,
the generation of new sample points) within a negid the
trade space. The resulting objective functiortlierattractor is:

Minimize |Y - ¢|
st.as<X< b (1)

where X is an-dimensional design vector with bounds,if&
andY is am-dimensional performance vector, which combines
to form the f+m)-dimensional trade vectaZ. ¢ is the k-
dimensional attractor vector whete (n+m).

Figure 1 demonstrates the performance of this Déeda
attractor for the example

f (x y) = xcos( 48) - y sir{ 45)
g9(x,y) = xsin( 453) + y co§ 45), 2)

wherex andy vary between [0,1] with an attracterplaced at
f(x,y) = 0. As aresult, Eq. (1) becomes:
Minimize |f(x,y) — O] 3)

This process effectively “paints” the trade spacmiad the
attractor, allowing preference to be specified anla limited
subset of the trade space while randomly explorthg
unspecified objective(s). The current implementatf the DE
algorithm [4] scales in both attractor and tradetoesize, but it
is designed to solve single-objective problems,, iie will
converge to the first point that reaches the atiracFigure 1a
and Figure 1b show the performance of the resulting
attractor in the design space and objective space, respggtiv
after covering to the attractor in 175 functionleations (FES).
Figure 1c and Figure 1d show the same results 20@0 FEs,
which represents 10 independent runs of the DErithgo.
These subsequent runs do not incorporate any iafitsm
learned previously, which limits the effectivenes$ this
approach. The modifications proposed in the nestien seek
to overcome this limitation by employing techniqusem
multimodal optimization. These techniques allow #igorithm
to paint the trade space around the attractor @ingle run,
which will improve the algorithm’s efficiency andfectiveness.

Copyright © 2008 by ASME



Xvs. Y f(x.y) vs. g(x.y)

a(xy)

q q
i} 025 05 075 0B 0375
X

Space — 175 FEs

Xvs. Y

: -
(a) Design (b) Objective Space-FEB

Fvs. G

0375

(c) Design Space — 2000 FEs (d) Objective Spadedo EE
Figure 1. DE-based Attractor Example (Attractor at f(x,y)=0)

3 PROPOSED METHOD

We introduce a new method for Advanced Sampling by
Differential Evolution (ASDE) to improve the perfoance of
the DE-based attractor. The ASDE biases new sampleard
the user-specified attractor while continuing to plere
dimensions for which no preference has been specifiThe
proposed ASDE algorithm combines the traditional
algorithm with a speciation strategy from Li [19hdh a
crowding strategy from Thomsen [20], tailored
implementation within our visualization software. The
remaining sections describe the key operators asduss
strategies for setting parameters for trade spggem®tion.

DE

for

3.1 Mutation and Mating

There are many DE mutation schemes in the litezatlihe
strategy DHand/l/exp is popular for multi-objective
optimization problems [19,20] and is utilized ftnist research.
We refer the reader to [21] for a detailed commarisf this
strategy to other mutation strategies. This sisatworks by
selecting 3 random parents and recombining themaious
fashions in order to generate a child. Equatigrdémonstrates

this approach, with a mutated vecfd[ﬂ [21]:
Vi,H=xr0,9+Fx(Xr1,6_Xr2,6)' (4)

where FO (0,1) is a user-defined scale factor afyl, is the

randomly selected individual from the current speéi where

Xig Wherei O {1,...,NP}.

After a mutated vectoy; e is generated, it is mated with a
parent population membe; g through a cross-over strategy. A
starting pointi is selected and the probability of cross-over is

the user-defined paramet&R If cross-over is successful, then
the i™ gene of the mutated vectdf g is swapped with thé"”

gene of parent vectoX;e. Then,i is indexed, and the process
is repeated until the cross-over is unsuccessftthi@end of the
gene is reached, at which point the mating prostegss.

After cross-over, the feasibility of the generatiild must
be assessed. Mezura-Montes et al. [22] and Lampéheal.
[23] present three selection criteria rules fordieng selection
between infeasible solutions. For this problem, wamnt to
make sure that no sample is “wasted” due to inifiélégi
therefore, a simple repair algorithm was develojpeguarantee
feasibility of all children. If a proposed child infeasible, then
each infeasible dimension is made feasible by plyitig the
distance fromX; 4 in Eqgn. (4) to the boundary by a uniform

U[0,1] random number and adding this distanc&tg,. This

ensures feasibility and attempts to keep pointsfomllecting
on the feasible boundary.

3.2  Speciation

A technique to locate multiple optima speciationused by Li
in the development of his species-based DE (SDH). [1
Speciation is a niching mechanism whereby the dlguis
population is grouped based on Euclidean distamtieei design
space. In DE, speciation keeps the randomly chossnbers
used for mating and mutation similar to those withihe
species. This effectively limits the algorithmigg-size to the
neighborhood of each individual species, reducietpcdion
pressure for the global population.

At the beginning of each iteration, the entire dapan, of
sizey, where:

NS
Uy = Z NR, (6)
i=1
NSis the number of species aN®, is the population of species
i, is sorted based on fitness, and the fittest mefstselected to
be a species seed. The next individual’s distamdbe seed is
checked, and if it falls within a user-specifieditesr, from the
seed, then it is considered to be part of thatispeotherwise,
it is set to be another species seed. This isatedefor allNP,
individuals in the population.

Once the species are established, a check is dogestire
that each species has at le@shdividuals. In DESis usually
set to a number greater than or equal to 3 bedabHsequires 3
or more individuals within each species to implemés
mutation and cross-over operators. If there are emugh
individuals, then new individuals are randomly teeiawithin
the species radius until at legdindividuals exist.

Adding individuals to the species could potentiaifgate a
population larger thapg, but if this is the case, only, total
individuals are selected to be species seeds ambers of a
species. Another potential problem is that somecispemay
converge more quickly than others, which may yrelddundant
individuals. To combat this problem, whenever ragiviidual is
created it is checked against the other individweithin the
current species. If it is a copy, then it is repld by a new
random individual [19].
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Specifying the radiusrg requires problem-specific
knowledge that can impact the algorithm’s perforoggn
moreover, it can be difficult to interpret from sem perspective.

If rg is too small, then each population member willdree its
own seed, generating a total Bftotal species. Each species
will then need to be increasedXts members to ensure that the
DE strategy can perform. Li [19] suggests randogdagerating
these extra members, which can lead to a randot-wal
condition as £1) randomly-generated individuals compete
with the species seed (worst-case). This leada total of
(B-1)NP randomly-generated individuals in a given popolati

The ASDE algorithm eliminates the radiug, parameter
and replaces it with the species paramet&, which is more
intuitive to the user, since it directly corresperid the desired
amount of diversity in the search space. By spegfNSand
NP, the user is generating a total pf parents in each
generation, whergg = NP x NS This also eliminates the need
for the 8 parameter since all species will have members.

For ASDE, the defining member of each species ss it
species seed. The species seed will have thestifjtness of a
given species, and the membership of each indiVidsia
determined solely on that individual's locationhnviespect to
the species seed. Figure 2 describes the layothiecoASDE
algorithm for generating species.

input : L-a list of all individuals
output: S-a list of all dominating individuals identified as species seeds
(p-a list of all species 6

hegin
¢ {0}:
while not reaching the end of L do
Lt — SORT(L,FITNESS);
Ngood — Xp € Ly
8 — Xgeed Remove Xo from Lipdividuals:
Lyist — SORT(L,DISTANCE);
fori=1:NP—1do

6 — Xf € Ldi.\t;

Remove X; from L;
end
Letp—86

end

end

Figure 2. ASDE Algorithm for Generating Species

This algorithm begins with a empty set of spegiesit
takes L as an input, which is the collection of surviving
individuals from all species in the previous getiera L is
sorted by fitness and placedlig. The individual with highest
fitness, X,, is removed fromL and becomes the first species
seed Xseeq Ldist iS defined a4, sorted in increasing Euclidean
distance toXgseq At this time, the firsNP-1 elements of g
are inserted into specie§ while being removed fromL .
Speciesf is added to the set of specigd g is resorted from
the remaining members &f and the process is repeated until
there aréNStotal species iy each withNP individuals.

3.3 Crowding

Another multimodal optimization technique that che
used to maintain diversity in the populationci®wding[20].
Crowding encourages exploration of the trade spacesasing
the probability of converging to multiple optimdt achieves
this by only allowing a newly generated offspring, to
compete with the individuaK; that is most similar to it.
Thomsen [20] defines similarity by Euclidean distarin the
design space, but a performance space-based impiktine
can also be employed. This offspring will thenlagpX; in the
next generation if it has a better fitness. Thel pdindividuals
that X; is chosen from is a random subset (crowd) of the
population with a crowd size set by the crowdingtda (CF);
usually taken to be a small number such as 2 or 3.

Due to theCF usually being set to a low number, crowding
has been known to experience a problem called cepiant
error, where the offspring replaces an individusttis not
similar to it [20]. ASDE combats this by setti@ equal to the
population size,NP, guaranteeing that it replaces the most
similar individual in the population. This increasruntime, but
this is usually insignificant when compared to timeeded for
fitness evaluation.

3.4 Complexity

The computational complexity of the resulting ASDE
algorithm is determined by the number of sortingragions
and the total population size. For each generatimre is one
sort by fitness l(;) and NS sorts by distancel §s). For each
Lgist calculation, a total of NP-1) distance calculations are
required. This gives a computational complexity $peciation
of 3(NSNP-1)), which is similar to the results found by 19,
but with a fixed number of species, the run-timenisre easily
controlled by specifying the paramet&B andNS

Meanwhile, each new individual must be comparetiffo
individuals in order to determine its closest neighfor the
crowding operator. This requires a total & x NP(NP-1)
comparisons for each generation. The overall coatjmutal
complexity of this algorithm i$}(44(NP-1)), which is smaller
than Thomsen'ﬁ(,ugz) for crowding [20], but is larger than Li's
(1 x NS for speciation [19] since typicalljS< NP.

4  ASDE PARAMETER ROBUSTNESS STUDY

4.1 Experimental Set Up

A robustness study was conducted to understand the
sensitivity of parameter selection and tuning of ffroposed
algorithm for ASDE. The factors (and levels) dkirest are:

¢ NP: Species Population Size (10,15,20,25)

¢ NS Number of Species (5,10)

The scale factoF and the cross-over ratioR were set to 0.5
and 0.9, respectively, based on Price's guidelj24$ and
testing by both Li [19] and Thomsen [20]. The itegtrange for
NP and NS were selected in order to gain insight into thetbe
makeup of a generation for a given number of fumai
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evaluations (i.e., a generation is defined\#®/x N§. Each test
executes 5000 functional evaluations, which cowadmgly
ranges to 20 (foNP=25 andNS=10) to 100 (forNP =10 and
NS=5) total generations.

For each run, the effect of attractor locationddrassed by
varying the placement of the attractor at fourediht locations
in the performance space between [0,1] (normaliagdthe
maximum). While &-dimensional attractor can consist of any
combination of design and performance variableis $tudy
will focus on performance-space attractors becalssign-
space attractors are problem invariant, and tridiamplement.
Of special interest is the algorithm's performangken the
attractor is located at the boundary of performafeesibility,
since all observations will be strictly greaterdethan the
specified attractor. In addition, three seeds selected for
random number generation for each run, with theltedeing
averaged to account for randomness in the algorithm

An initial set of 8 functions from the Walking Figbroup
(WFG) test suite [25] were selected to be reprediemet of
multi-objective engineering design problems. ThEG\suite is
completely scalable in both number of allowableigiesand
performance variables. Design variables are aiatcas either
position or distance variables. Position variabtedine a
Pareto Front; their modification generates add#iopoints
about the same front. Distance variables mové#reto Front;
their modification either dominates or is dominated the
original point. By increasing the number of pasiti
parameters, the number of unique designs that mapsingle
performance vector increases, creating a many-¢ofareto
mapping, allowing for multiple design vectors tarespond to
a single performance vector. Table 1 summarize$eatures of
the 8 WFG test problems used in this first stublypte that two
problem sizes are considered, representing “snf@allhputs, 2
outputs) and “medium” (15 inputs, 2 outputs) engiigy
design problems. Half of the problems are unimadale the
other half have multiple local optima that can teapalgorithm
into false Pareto Fronts. Finally, the problems also evenly
divided between one-to-one mappings and many-to-one
mappings. Executing each combinationN# andNSon each
test problem yields a total of 768 runs (8 testbpgms x 8
combinations x 4 attractor locations x 3 randondsge

4.2 Performance Metrics

For this parameter robustness study, the perforenafc
each parameter combination is measured for ita¢turacy—
the ability to generate points near the specifitiéetor, and (2)
diversity — the ability to spread points about the non-etée
variables in the design space. In a traditionaltirobjective
optimization algorithm, accuracy is often measubaged on
the distance of the generated set of non-dominatéats to a
known Pareto-optimal set [26,27]. Since optimizatis not the
intention of the ASDE algorithm, we use an averdgtance
metric, Y, to measure the average distance ofi diésigns to the
user-specified attractor:

n —_
Y= Z [M} ' 7)
i=1 n
whereY and¢ are the normalized [0,1] values used to ensure
each dimension in the performance space is equailyhted.

The diversity metricH, is based on Shannon's Entropy
metric [28], which measures how evenly spaced thiatp are

throughout the region of interest:

N
H=->pInp,
i=1
where g represents the density of tif& of N bins. For this
experiment, the number of bins is takerNasn/2
Variations of this metric are commonly used fotitesthe
diversity of multi-objective optimization algorithsn[26,27].
For attractor-based sampling, the goal is to meathe spread
of all samples about the attractor; therefore diersity metric
H is calculated for each non-attracted design vbiab
individually and then averaged for each test pnwmbland
normalized by In{), which represents the greatest possible
diversity for a given number of bins.

(8)

Table 1. Features of WFG Test Problems for Robustness Study

Problem Function M ode Size M apping
1 WFG8 Unimodal [5,2] One-to-One
2 WFG8 Unimodal [5,2] Many-to-One
3 WFG8 Unimodal [15,2] One-to-One
4 WFG8 Unimodal [15,2] Many-to-One
5 WFG9 Multimodal [5,2] One-to-One
6 WFG9 Multimodal [5,2] Many-to-One
7 WFG9 Multimodal  [15,2] One-to-One
8 WFG9 Multimodal [15,2] Many-to-One
4.3 Results of ASDE Parameter Robustness Study

Assuming that the given problem is a black-box nhode
then the only information knowa priori is the size of the
design and performance vectors, and the intendedrisg
command (in this case, a 1-D attractor placed ie th
performance space). Other information, such asntbdality
and mapping of the problem will seldom be knowrlgast not
until many samples have been taken [28]. Thereftne
analysis was completed by problem size, and thecetif the
tuning parameters for attractor location, modadityd mapping
was determined.

The results are plotted in the Appendix. The éffext NP
and NS on the accuracy and diversity are plotted seplgrate
Figure A for the “small” § = 5) and “medium” i§ = 15) WFG
test problems. Regardless of problem di#eé = 10 andNS=5
perform the best, and these settings dominatettadlr settings
with respect to the accuracy metric. This corresisoto an
exploiting algorithm setting, where a small popiatdrives
the sampling quickly to the attractor. While a@myr was worst
when the attractor was near the boundaries, thettiags still
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performed the best, relative to the other settingSor the
diversity metric, NP = 25 andNS = 10 performed the best
across all problem types, which corresponds to »@iogng
setting. This result is intuitive, since theramsre diversity in
the population asNP and NS increase; hence, there is more
exploration of the trade space. However, the udifiee
between average diversity of settindéP[NS = [25,10] and
settings NP,NS = [10,5] is only 3%, while the difference of
accuracy at these settings is 25%. Therefore,dbasethis
analysis, NP,NY =[10,5] are recommended.

5 DETAILED ASSESSMENT OF ASDE

Having identified robust parameter settings for A&DE
algorithm, we can now test its performance on hifié
problems and compare it against other sampling odsth We
use the accuracy and diversity metrics from Sectdadh to
assess the performance of ASDE in each case.

5.1 Test Problems for Detailed Assessment Study

The ASDE algorithm is now tested on all 9 functiomshe
WEFG test suite [25] with levels:
* Problem Size: [5,2],[15,2]
e Mapping: Many-to-One, One-to-One

As in the parameter robustness study, the scalerfaand
the cross-over rati€R were set to 0.5 and 0.9, respectively,
and the values dfiIP andNSwere set to 10 and 5, respectively
based on the results of the robustness study. tHeoMany-
to_One problems, all but 2 inputs are designategaesition
variables. For the One-to-One problems, 1 inpweisignated
as a position variable. Each test is run for 5@@ctional
evaluations, and the effect of attractor locatiermddressed by
positioning the attractor at 4 different locatidpstween [0,1]
(normalized by the maximum), and three seeds welected
for random number generation for each run, with tbsults
being averaged. These results are compared tdakeline
algorithm of simple Monte Carlo sampling over thede space.
The results are discussed and analyzed in Sectton 5

An engineering application is also tested (see eral
This application is a vehicle configuration modéktt was
developed previously to evaluate the technicaliffidag of new
vehicle concepts [29] and to demonstrate the vistedring
commands initially proposed by Stump et al. [4]heTmodel
consists of 11 inputs (ten continuous and one elisgrand 7
outputs (total constraint violation, mass, and folgectives).
The ten continuous inputs define vehicle geometeadables
and are normalized to [0,1] against the baselinelahdo
protect the proprietary nature of the data; H defirthe
powertrain and can take one of six options: [1£536].
Feasible designs are those with no constraint tisia
(ConVio=0), and the preference for each objectivendicated
in the table. In order to compare results to presiones, we
used the same attractor location: [Objl,0bj2]=[@,84127].
Results are discussed in Section 5.3.

Table 2: Vehicle Problem Definition

Model Inputs
Variable L ower Bound Upper Bound

A 0 1

B 0 1

Cc 0 1

D 0 1

E 0 1

F 0 1

G 0 1

H 1,2,3,4,5, or 6

| 0 1

J 0 1

K 0 1

M odel Outputs
ConVio 0 > feasible > 0> infeasible

Mass Baseline =1 Defines weight class
Objl Baseline =1 Smaller is better
Obj2 Baseline=1 Larger is better
Obj3 Baseline =1 Larger is better
Obj4 Baseline =1 Larger is better
Obj5 Baseline =1 Larger is better

5.2 Performance of ASDE on WFG Test Problems

Figure 3 summarizes the percent change of ASDEher
WFG test problems as compared to simple Monte Carlo
sampling. As expected, ASDE significantly outpemie MC
sampling with respect to the accuracy metric, bhuhe cost of
diversity. However, the median loss of diversityanly 9%
while the median gain in accuracy is 65%. The @R&ne
problems had a higher accuracy improvement, witiean gain
of 72% vs 60% for Many-to-One problems. ASDE's
performance is relatively invariant to mapping, lthe MC
sampling performs about 16% worse with the Manpte
problems. This can be attributed to a signifidasias caused by
the Many-to-One mapping which decreased the prdibabf
randomly sampling near the placed attractors. dhess no
significant difference in diversity with respect foroblem
mapping for either ASDE or simple MC sampling.

Accuracy
50

@ One-to-One
40 { @ Many-to-One

30

20

30 a0 50 60 70 80 %
Percent Improvement of ASDE

Diversity

= One-to-One
B Many-to-One

30

20

20 15
Percent Loss of ASDE

Figure 3. Percent Differencein Accuracy (top) and Diversity
(bottom) of ASDE compared to Monte Carlo Sampling for All
WFG Test Problems
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Figure 4 demonstrates the effect of tuning-paramete exploitation, as a species is located in that megevery

selection on ASDE's diversity. It shows a 2-D biggtam of
design variableZl vs. performance variabl€l. The test
function that performed the worst, where the dikgisss was
nearly 40%, was WFG1 when the attractor was plaatefd:

F1=2.75] which was the upper bound of feasibility Fir (see
Figure 4a). This is a circumstance where incregasikploration
through tuning would be beneficial. For examplehi$ test was
run with tuning parametersNP,NY = [25,10], then the
diversity is improved as seen in Figure 4b. Undeis

circumstance, by increasing ASDE's exploration bdia

through tuning, the gain in accuracy (as comparedViC

sampling) decreases from 70% to 36%, but the ramudh

diversity is only 4% (vs. 7%) of the MC.

an3

(a) Exploitation Strategy (b) Exploration Strategy

Figure 4. Effect of Tuning Parameter Selection on WFG1 with an
Attractor Placed Outside the Feasible Region [¢: F1=3.0]

Figure 5 visually demonstrates the ability of ASBEbias
sampling to various attractor locations for WFG4hwjin=>5]
and a many-to-one mapping. Note that the attrdotmation is
indicated by the vertical plane shown in each phid the
height of each column indicates the number of samplithin
this particular region of the two-dimensional hggam. The
axes represent design variaBle and performance variablel.
While Monte Carlo sampling is effective at spreadipoints

acrossF1 (see Figure 5a), ASDE can hias sampling toward
specific regions of interest. For instance, Figbeeshows that

ASDE can effectively sample two regions simultarsiplby
adjusting the sampling of each design variabl¥.in
A comparison of the final distribution of each dgsi

variable in X is shown in Figure 6. The speed of ASDE in

locating an attractor can be seen in a time-seoie-D

histograms in Figure 7. Figure 7a shows the indigoloration
of ASDE, as the search space is sampled broadtrder to
locate points near the attractor. By 1000 FEsatberithm has
already begun biasing samples towards the attractbere is
no discernable change in the sampling from the 100R000
FEs interval (see Figure 7b) to the 4000 to 5008 IREerval,
(see Figure 7c¢). By 2000 FEs, ASDE has exploitedregion
around the attractor, and relatively few samples ganerated
away from it. However, there is a cluster of psigenerated
near [Z1=1.0], which maintains active sampling tigiout the
entire time-series, even though it is not near dheactor of
interest. This demonstrates the balance of exjdoraand

generation in an effort to find new and potentiabgtter
solutions. AsNS is decreased, the effect of these “rouge”
species decreases, at the risk of completely ngisalternate
regions of interest along the attractor.

28
¥
21
- * 99

1106

(a) Simple Monte  (b) ASDE - Attractor: (c) ASDE -
Carlo Sampling [p: F1=0.25] Attractor: [p:
F1=2.75]

Figure 5. Examples of Attractor Placement and Resulting Sample
Distribution for WFG4 (n=5, many-to-one mapping)
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(a) Simple Monte Carlo Samplingb) ASDE - Attractor: ¢: F1=2.75]

Figure 6. Histogram of Sample Distributionsfor All Dimensions
for WFG4 (n=5, many-to-one mapping)

1730

(a) 0 to 1000 FEs

(b) 1000 to 2000 FES(c) 4000 to 5000 FEs

Figure 7. Evolution of Sample Points by Number of Function
Evaluations (FEs) for WFG4 (n=5, many-to-one mapping) and
Attractor at [@p:F1=2.75].

5.3 ASDE on Engineering Application

Five trials are run using the original DE-based npoi
sampler [4], and five are run using ASDE for thehicke
configuration model. Each trial is allowed to réor 5000
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function evaluations by setting the Population Ltifor ASDE
to 5000 and looping the DE-based point samplei itntises
5000 function evaluations. Each of the five ASDHI$ and
each DE-based point sampler trial are very simitarone
another, and Figure 8 and Figure 9 are represeatafi the
results from these five runs. Using the defautirsgs for the
DE-based point sampler amdR, NS = [10,5] for ASDE vyields
more diversity in DE-based point sampler resultstbee ASDE
results are more accurate, i.e., closer on avetagbe user-
specified attractor.

.A-

oy

(a) ASDE Sampler - Run 1 (b) DE-based Point SamyiRam 2

Figure 8. Representative Scatter Plots of ASDE Sampler and DE-
based Point Sampler

Attractor_1

Attractor_1

2775 1081

x
obj] ‘ 17
obj1

(a) ASDE Sampler - Run 1 (b) DE-based Point SampRam 2

Figure 9. Corresponding 2D Histograms of ASDE Sampler and
DE-based Point Sampler

Figure 10 shows how the accuracy and diversity metrics

evolve with the number of function evaluations &ach trial.
For all of the trials, both metrics start off closeone another
for the two samplers; however, the metrics for Bie-based
point sampler remain nearly constant during all®®&@nction
evaluations. Meanwhile, the ASDE sampler becomesem
accurate as the number of function evaluationsees® but at
the sacrifice of diversity. This is likely happegibecause each
time the DE-based point sampler converges to ttractor it
restarts with no memory of its previous search. e HSDE
sampler, on the other hand, takes longer to fiedattractor, but
once it does, it continues to find points near dkteactor. As
discussed in Section 5.2, the performance of ASRR be

modified by adjusting NP, N§ to meet the user's needs,

tailoring the algorithm to the specific problemresded.

Attractor Run 1
osl Aftractor Run 2
Attractor Run 3
Attractor Run 4
Attractor Run 5
———-ASDERun1
———-ASDE Run 2
07 ———-ASDERun3
——— ASDERun4
———-ASDERun S

065 L L L . L |
1000 1500 2000 2500 3000 3500 4000 4500 5000
# Function Evaluations

(a) Diversity vs. Functional Evaluations

Diwersity

075F

0251

0z

[
o
.
£
7

Attractor Run 1
Attractor Run 2
Attractor Run 3
Aftractor Run 4
Aftractor Run 5
——-ASDERun1
005F ———-ASDERun 2
———-ASDE Run 3
———-ASDE Run4
———-ASDERuUn S

0 T T | | . 1 L i
1000 1500 2000 2500 3000 3500 4000 4500 0 5000
# Function Evaluations

(b) Accuracy vs. Functional Evaluations

Accuracy

o

Figure 10. Evolution of Diversity and Accuracy of ASDE
and DE-based Point Sampler for Each Run

6 CLOSING REMARKS AND FUTURE WORK

The proposed ASDE algorithm extends DE through

modified speciation and crowding to explore a trapgace more
efficiently and effectively. This is in contrast the traditional
DE strategy, which seeks to converge to a singlgémoin
(single objective) or Pareto set (multi-objectivéf. doing so, it
provides useful information to designers, allowthgm to form
their preferences as they learn about what is stiaily
feasible versus forcing them to state their prefeesa priori.

A parameter robustness study was performed to rditer
the effect of parameter selection on the performaot the
ASDE algorithm. The study found that under mostditions a
single parameter setting provides the best accunaith
minimal loss in diversity. A detailed study comgérthe
performance of ASDE to simple Monte Carlo samplirging
the WFG test suite [25] and found that ASDE wasdife in
accurately locating the attractor with minimal dsity loss.
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Finally, ASDE was compared to a DE-based point $amp
[4] on an existing vehicle configuration model. DS was able
to outperform the DE-based point sampler in terfr@couracy
by continuing to explore regions near the attractithout
repeatedly restarting the algorithm after convecgen This
restarting gave the DE-based point sampler an aageanin
terms of diversity, resulting from the randomnesthwhich
new populations are created each time the algoniéstarts.

ASDE does not currently employ a species convegenc
strategy to ensure that new and unique points angéinually
generated. For future work, a strategy to mordtod address
species pre-convergence is needed. In additiothads to
modify NP andNS“on the fly” should be investigated to allow
designers to maintain and fine-tune the extent hichivASDE
explores the trade space versus exploits new kug@las it is
gained.  Additional studies using design-space agitirs,
combined design/performance space attractors, lange” test
problems with high dimensionality (e.g., 50+ inpuasd more
than two objectives should be evaluated to furthesess the
robustness of the ASDE algorithm. Finally, reskaito
seeding ASDE with promising designs selected byuer will
provide the user with more direct control of tharsé process
and could improve the algorithm’s efficiency anteefiveness.
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