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Recent advances in computing power and speed allow designers to simulate 
thousands, if not millions, of design alternatives more cheaply and quickly than 
ever before.  These advancements provide new opportunities to revolutionize 
trade space exploration for complex dynamic systems in the aerospace industry, 
among others.  In this paper, we demonstrate our multi-dimensional data 
visualization software, the Applied Research Laboratory (ARL) Trade Space 
Visualizer (ATSV), to search for optimal impulsive trajectories in a two-burn 
plane change spacecraft maneuver.  This problem is formulated as a multi-
objective optimization problem where it is desirable to explore various 
competing objectives.   

 
INTRODUCTION 
 

The continual improvements in computing power speed allow today’s engineers and 
designers to evaluate more design alternatives than ever before.  Rapid visualization and 
analysis combined with model integration can allow decision makers to explore a design 
space quickly and efficiently.  This concept of trade space visualization is particularly 
useful for the design of complex systems, such as automobiles, aircraft, and spacecraft.   
 

Engineers now recognize the importance of visualizing possible designs beforehand, 
rather than trusting black-box algorithms to optimize multi-objective decisions.  This new 
paradigm is dependent upon using an a posteriori approach to design, in which designers 
utilize their own experience and intuition to “shop” through a set of possible designs. 
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Balling [1], credited with the “Design by Shopping” paradigm, found that traditional 
optimization-based design processes often leave designers unsatisfied with their results.  
Balling states that this is most likely a consequence of the initial design problem being 
improperly formulated: “the objectives and constraints used in optimization were not 
what the owners and stakeholders really wanted…in many cases, people don’t know what 
they really want until they see some designs”.  Furthermore, Wilson and Schooler [2] 
have found that people often do worse at decision making tasks when asked to analyze 
the reasons for their preferences.  Consequently, trade space exploration intends to take 
advantage of a designer’s intuition and experience to allow the user to choose designs as 
well or better than more costly alternatives. 
 

Within the visualization community, interactive optimization-based design methods 
fall mainly into the category of computational steering whereby the user (i.e., designer) 
interacts with a simulation during the optimization process to help “steer” the search 
process toward what looks like an optimal solution [3].  The designer observes some sort 
of a visualization of the optimization process and then uses intuition, heuristics, 
experience, or some other method to adjust the design space to move toward something 
that may not have been intuitive at the beginning of the simulation.  The importance of 
using visualization together with optimization is discussed at length by Messac and Chen 
[4]: “If effectively exploited, visualizing the optimization process in real time can greatly 
increase the effectiveness of practical engineering optimization.”  Ng [5] advocates the 
use of data visualization and interaction to support the designer in making informed 
decisions and tradeoffs during multi-objective optimization.  Finally, Eddy and Mockus 
[6] argue that visualization should be considered as a solution tool rather than a means to 
present results.   
 

This paradigm can be applied to various astronautics problems, including the optimal 
orbit transfers that are the focus in this paper.  Throughout this work, the Applied 
Research Lab Trade Space Visualizer (ATSV), described next, is utilized as a tool for 
evaluating a design space and applied to an example in orbital mechanics. 
 
ATSV BACKGROUND 
 
Multi-Dimensional Trade Space Visualization in ATSV 
 

The ATSV is a Java application that displays multi-dimensional trade spaces using 
glyph, histogram, scatter, scatter matrix, and parallel coordinate plots [7].  Since the 
ATSV is developed in Java, its cross-platform compatibility allows relatively simple 
model integration, making it an advantage over most commercially available software 
systems. 
 

The ATSV also offers linking between plot types, which helps users recognize 
underlying patterns and relationships that exist in the data.  The data can be brushed and 
preference shaded with respect to any objective function.  Pareto filtering can be 
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implemented in multiple dimensions to reduce the data set to the most ideal solutions 
with respect to specified preferences of objective functions. 
 
Static Datasets, Dynamic Datasets, and Sampling 
 

The ATSV can explore design spaces statically or dynamically.  Static data sets, 
generated from an external model, are read from comma-, space-, or tab-delimited text or 
spreadsheet files (filename.csv).  Objective functions and their values for each population 
member are organized within these files as shown in Table 1. 
 

Table 1:  Structure of Static (.csv) Spreadsheet Data Files 
 

Pop 
member 

Objective 
Function 

#1 

Objective 
Function 

#2 

Objective 
Function 

#3 

Objective 
Function 

#4 

… Objective 
Function 

#n 
1 <value> <value> <value> <value> … …<value> 
2 <value> <value> <value> <value> … …<value> 
3 <value> <value> <value> <value> … …<value> 

 
Dynamic datasets are generated by integrating the ATSV with external code via a 

“wrapper” that allows the ATSV to directly sample design inputs to generate new design 
alternatives and visualize objective function outputs.  By clicking File / Link to 
Exploration Engine, this dynamic data generation and visualization can be implemented.  
The advantage to integrating external code with the ATSV primarily lies in the ability to 
specify five types of visual steering commands to generate new data by random sampling, 
manual sampling, attractor-based sampling, preference-based sampling, and Pareto 
sampling [3].  Random sampling will randomly generate values for each design input 
between specified limits with uniform or normal distributions.  This type of sampling is 
designed to populate the objective space with random points, possibly to attempt to 
identify trends.  Manual sampling allows the user to precisely pick design input values 
and visualize the corresponding single output in the objective space.  Preference based 
sampling will generate points in a region of interest.  This region is specified by the user 
by assigning weights on objectives of importance.   Pareto sampling will generate 
solutions along a Pareto frontier.  The Pareto front must be defined by the user by 
specifying a direction of preference for each objective function.  The ATSV’s attractor 
based sampling creates points in the objective space close to a desired location, specified 
by an “attractor”. 
 

Attractors, specified in the interface by the  icon, generate points near a specified n-
dimensional location in the trade space.  These attractors, also referred to as point 
samplers, can be used to create a cluster of points in the trade space in order to “fill gaps” 
or explore a specific space in more detail.  An evolutionary algorithm, specifically 
Differential Evolution [8], is used to guide the sampling process in order generate points 
in the objective space from n-dimensional discrete and continuous inputs.  Details on the 
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implementation of Differential Evolution and the visual steering commands within ATSV 
can be found in Ref. [3].   
 
Plots  
 

The three-dimensional glyph plot is capable of displaying eight dimensions 
simultaneously: three spatial dimensions as well as point size, color, transparency, 
orientation, and text overlay.  Using the mouse, the user can navigate through the dataset, 
plotting any objective function with respect to any of the seven dimensions. The two-
dimensional scatter plot is similar to the glyph plot, but allows the user to visualize only 
two spatial dimensions and a third dimension represented by color.  The importance of 
these two plot types with regards to objective space exploration is the primary focus of 
the orbital mechanics example presented in this paper. 
 

The ATSV can also display scatter matrix, parallel coordinates, and histogram plots.  
The scatter matrix shows thumbnail images of 2D scatter plots showing each objective 
function versus every other objective function.  This allows the user to quickly locate and 
recognize patterns in objective function data.  The parallel coordinates plot shows 
graphical representations of relationships between design inputs and objective functions 
as lines between values.  It is useful for identifying connections and relationships 
between variables of interest that might otherwise be difficult to discover. 
 

Statistical distributions of values of design inputs and objective functions are 
visualized with the histogram plot.  This type of visualization is useful for understanding 
how design input distributions may affect objective functions of interest.  The two-
dimensional histogram plot allows the user to visualize distributions of two variables of 
interest simultaneously. 
 
Brush and Preference Controls 
 

For each objective function of interest, there is the ability to view only specified 
points between certain feasible ranges by “brushing” the dataset [9].  Preference controls 
allow the user to specify a desired minimization or maximization of specific objective 
functions, permitting the ATSV to filter the corresponding Pareto front.   
 

As an example, the ATSV can be used to explore the decision space populated with 
many different automobiles.  Controls can be added for the horsepower and highway 
efficiency objective functions.  If the decision maker has knowledge of what range of 
these values are feasible, the minimum and maximum values can be entered to “brush” 
out infeasible values.  For example, the user can specify reducing the visible dataset to 
automobiles with horsepower between 150 and 250, and highway efficiency above 20 
mpg.  Furthermore, the preferences on these two variables would most likely be set to 
maximize horsepower and highway efficiency simultaneously. 
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The resulting brushed dataset showing highway efficiency versus horsepower might 
look something like Figure 1.  The gray points show designs rendered infeasible as 
specified by the brush controls.  The red points are feasible solutions within the specified 
ranges.  Points marked with a black + symbol show the Pareto front formulated from the 
preference controls.  These are the solutions that mutually maximize horsepower and 
highway efficiency and lie within the feasible objective space. 

 

 
Figure 1: Brushed Car Dataset Showing Infeasible Designs (Gray), Feasible Designs 

(Red), and the Pareto Solutions (Marked by +). 
 
ORBITAL PROBLEM SPECIFICATION 
 

In order to demonstrate the ATSV as a visualization tool that aids in multi-objective 
decision making to the orbital mechanics community, a sample orbital transfer problem 
has been modeled in MATLAB.  The problem models an impulsively delivered two-burn 
plane change spacecraft maneuver from an initial circular orbit to a higher altitude 
circular orbit.  The impulsive changes in velocities (∆V’s) are constrained to be delivered 
at the nodal crossings (see Figure 2 points A and B) to prevent alteration of the right 
ascension of the ascending node.  A graphical illustration of this two-burn transfer is 
shown in Figure 2. 
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Figure 2: Graphical Illustration of Two-Burn Transfer 
 

The green orbit is the initial circular orbit at inclination i1 shown in Figure 2(a) and 
(b), the blue orbit is the arc traced by the transfer ellipse at inclination it, and the dotted 
line represents the direction of the final circular orbit at inclination i2.  ∆V1 is the 
impulsively-delivered velocity change at the first nodal crossing, and it is delivered at a 
flight path angle of Φ with respect to the orbit tangential direction, and an out-of-plane 
angle β as shown in Figure 3 and Figure 2(a), where x'-y' is the plane of the initial 
circular orbit.  The problem inputs and outputs with corresponding ranges and 
preferences are summarized in Table 2. 

 

 
Figure 3: Illustration of Angles Φ and β. 
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Table 2: Orbital Problem Inputs/Outputs and Ranges/Preferences 

 
Inputs Range 

i1 Constant 
i2 Constant 
∆V1 ∆V1 > 0 

Out-of-plane angle, β -90° < β < -90° 
Flight path angle, Φ -45° < Φ < 45° 

Outputs Preference 
∆VTotal Minimize 

Time of Flight Minimize 
Final Orbital Radius r2 Maximize 

Practical Discrete Boolean 
 
Note: Only outputs of critical design criteria are listed in this table.  All relevant 
variables generated in the model are included in the dataset. 
 

The MATLAB code algorithm developed for this example is shown as a flow chart in 
Figure 4.  First, the inclination (i1) and altitude of the initial circular orbit are specified.  
Then, the essential orbital elements are calculated for this initial orbit.  Next, the code 
randomly varies ∆V1, Φ, and β between the ranges specified in Table 2, and the resulting 
characteristics regarding the transfer and final orbits are obtained.  This information, 
including objective functions ∆VTotal, time of flight, and final orbital radius, is calculated 
by solving Lambert’s problem using Lagrange coefficients [10]. 
 

Each orbit trio is evaluated for practicality based on the rotation of the orbit planes 
between the initial, transfer, and final orbits.  If the transfer orbit has an inclination that is 
not between the inclination of the initial and final orbits, the solution is tagged as 
impractical.  Though these solutions are feasible, they represent all orbit trios aligned 
with a “one step backward, two steps forward” approach.  Once the program has looped 
through all population members, all objective functions of interest are written to a 
comma-delimited (.csv) excel file. 
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Figure 4: Flowchart Depicting the Algorithm of the MATLAB Code. 
 

When visual steering is implemented by integrating this MATLAB code with ATSV 
via a Java wrapper program, the code is slightly modified such that one population 
member is evaluated, and then immediately exported to ATSV.  This allows real-time 
visualization of possible solutions in the objective space as they are generated. 
 

Common initial orbital parameters were chosen for the solutions generated in this 
work; they are listed in Table 3.  The initial inclination i1, initial circular altitude, and 
final inclination i2, were chosen to represent an orbital transfer from 28.5°, 500 km low 
Earth orbit to equatorial geosynchronous. 
 

Table 3: Initial and Desired Final Orbit Characteristics 
 

Initial altitude LEO 500 km 
Initial inclination i1 28.5° 
Final altitude GEO 35,786 km  
Final inclination i2 0° 

 
RESULTS AND DISCUSSION 
 
Static Dataset 
 

Using the aforementioned MATLAB code, a static dataset consisting of 10,000 
members is generated for the orbital transfer problem specified in Table 3.  Plotting the 
three objective functions of interest (∆VTotal, time of flight, and final orbital radius) on 
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each of the spatial axes creates a three-dimensional envelope, as shown in Figure 5.  
Figure 5(b) shows an iso-surface at a final orbital radius corresponding to the final 
desired altitude of 35,786 km.  This plane shows the region of interest to be further 
explored in the ATSV. 

 

 
Figure 5: (a) Static Dataset Consisting of 10,000 Members.  (b) Isosurface Showing 

Plane of Interest Near GEO Altitude and Pareto Solutions 
 

The red and blue points are solutions that are practical and impractical, respectively, 
based on the aforementioned criteria.  The solutions marked with a black + symbol 
represent the Pareto solutions as specified by the preferences shown in the 
Preference/Brush Control Window in Figure 6.  These settings aim to highlight solutions 
that simultaneously minimize ∆VTotal and time of flight while maximizing the radius of 
the final circular orbit. 
 

(b) 

(a) 
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Figure 6: Brush/Preference Controls Window for Orbital Problem Solution Set 
 
Data Exploration and Reduction 
 

The static dataset shown in Figure 5 has been brushed to exclude all points that have a 
final orbital radius outside the region of interest, nominally specified to be between a 
final orbital radius of 40,000 km and 45,000 km.  The resulting dataset is shown in Figure 
7(a).  
 

 
Figure 7: (a) Static Dataset Brushed to Final Orbital Radius Between 40,000 and 

45,000 km.  (b)  Histogram plot of Inputs Brushed in the Same Manner 
 
Figure 7(b) shows the problem input distribution for the first impulsive maneuver.  

The white bars show the total distribution of each input (approximately uniform), and the 
red bars show the distribution of inputs for the brushed dataset.   Essentially, any bins 
without red represent inputs that create solutions far away from the area of interest.  
Proceeding logically, the range of inputs should be reduced by the user to increase the 
likelihood of generating solutions within the region of interest.  From visual inspection of 
the histograms, reducing inputs to larger values of ∆V1 would be most effective.  Also, as 

 

(a) 

 

(b) 

 
Phi 
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shown in the color contour in Figure 7(a), non-positive values of Φ create solutions along 
the Pareto Front which minimizes ∆VTotal and flight time.  
 

By changing the random distribution of ∆V1 from [0, 3.0] km/s to [2.0, 3.0] km/s and 
Φ from [-45°, 45°] to [-45°, 0] in the model, a population of 10,000 solutions generates 
approximately 500 new points in the region of interest.  By generating static datasets, 
then brushing to the region of interest, and exporting visible designs, the solutions in the 
region of interest are stored in a separate file.  Just a few iterations of this technique result 
in the concatenation of all these region specific points shown in Figure 8(a) and (b). 

 
 
Figure 8: (a) and (b) Two Perspectives of Densely Populated Region of Interest with 

Iso-surface at GEO Altitude 
 

 

 

(a) 

(b) 
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Observable Trends 
 

After the region of interest has been more densely populated, it is easier to more 
precisely recognize trends in the dataset.  As shown in Figure 8, the three-dimensional 
envelope formed by the practical (red) points seems to be representable by a continuous 
Pareto surface.  Based on the physics in the model, this apparent continuality is an 
expected result and leads to the conclusion that this problem is well suited for static 
datasets and may not require the use of attractors.  In other words, the nature of the 
problem results in easily acquired Pareto solutions, and no “gaps” exist near the Pareto 
front that must be filled. 
 

Using the ATSV’s Scatter Matrix Plot, one can easily view trends between variables 
of interest.  This scatter matrix, brushed to ±50 km from the target GEO altitude, is 
shown in Figure 9.  Once again, gray points represent “brushed out” points, and red and 
blue points are the practical and non-practical solutions respectively which fall within this 
criterion.  Because of this ±50 km brushing, the trends that follow can be considered 
specific to the LEO to GEO problem parameters listed in Table 3.  Though not all points 
fall precisely on the plane formed by the geostationary altitude, these solutions are 
considered in the neighborhood and would undoubtedly be subject to orbital fine tuning 
and phasing, but this is beyond the scope of this demonstration. 
 

 
Figure 9:  Scatter Matrix Plot of Variables of Interest 
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The two highlighted scatter plots, time of flight vs. ∆VTotal, and ∆VTotal vs. ∆i1 are of 

particular interest.  These plots are enlarged and shown in Figure 10 and Figure 11, 
respectively.  The trend of the Pareto front in Figure 10 shows an inverse relationship 
between time of flight and ∆VTotal.  Furthermore, it resembles the expected solution for a 
two-dimensional version of this problem with no plane change (from Lambert’s problem) 
[10].  Intuitively, the trend’s shape remains similar for different desired final orbit sizes. 

 
 

Figure 10: Solution Set and Pareto Frontier for Time of Flight vs. Total Impulsive 
Velocity Change (±50 km Brush) 
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Figure 11: Total Impulsive Velocity Change vs. Inclination Change from First Burn 
(±50 km Brush) 

 
Figure 11 shows ∆VTotal vs. the change in inclination after the first impulsive 

maneuver (∆i1).  Because of the nature of this specific plane change as well as the manner 
in which angle β is defined, solutions must have a negative ∆i1 value to be considered 
practical.  As orbital dynamics theory suggests, the optimal (Pareto) plane change 
transfers shown here are solutions which impulsively deliver the most inclination change 
during the second burn (at a lower orbital velocity).  Consequently, the optimal solutions 
have small ∆i1’s, shown in Figure 11 to be within a range of 0° to 5°. 
 

The Pareto design that most effectively minimizes ∆VTotal has design attributes listed 
in Table 4.  

 
Table 4: Attributes of Solution with Minimum ∆VTotal 
∆V1 2.403 km/s 
Out-of-plane angle, β -11.05° 
Flight path angle, Φ -0.3776° 
∆VTotal 4.1625 km/s 
Time of Flight 316.41 min 
Final Orbital Altitude 35,740 km 
∆i1 -2.645° 
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Comparison with Analytical Optimal Three-Dimensional Orbit Change 
 

Vallado [10] explored a similar three-dimensional two-burn plane change orbital 
mechanics problem.  The ∆i1 and ∆i2 which lead to the lowest ∆VTotal can be solved for 
iteratively in what Vallado labels the “minimum combined plane change” algorithm: 
 

atransferinitial

btransferfinal

VVV
isVVV

is
,2

,1 ))1sin((
)sin(

∆
∆∆

∆
−

=     (1) 

 
where Vinitial and Vfinal are initial and final circular orbital speeds, Vtransfer,a and Vtransfer,b are 
speeds at points A and B as shown in Figure 2, and s is a scaling factor that represents the 
percentage of the total inclination change which is delivered on the first burn: 
 

1∆ = ∆i s i  and isi ∆∆ )1(2 −=      (2) 
 

Solving the equation iteratively yields an optimal s, which in turn creates the optimal 
distribution of plane change between the initial and final maneuvers.  For the initial and 
final orbit characteristics explored in this paper (see Table 3) this algorithm yields the 
optimal transfer parameters listed in Table 5. 
 

Table 5:  Comparison between ATSV Results and Minimum Combined Plane 
Change Algorithm 

 
Parameter ATSV Algorithm % Difference 
∆VTotal 4.1625 km/s 4.1620 km/s 0.01%* 
Final Orbital 
Altitude 

35,740 km 35,786 km 0.13% 

∆i1 2.645° 2.262° 14.5% 
∆i2 25.855° 26.238° - 
* Negligible within uncertainty 

 
As shown in the last column of Table 5, the percent difference between the ATSV 

results and the minimum combined plane change algorithm results is small.  The total 
impulsive velocity change is the same within the uncertainty of the algorithm calculation.  
The algorithm yields an optimal initial plane change of 2.645° which is 14.5% higher 
than what the ATSV found.  However, since the ATSV did not locate a solution precisely 
at geostationary altitude, the comparison to the iterative algorithm serves more as a 
verification of the data and less as an optimality criterion.  The ATSV has clear 
advantages over this algorithm in that it can visualize the entire design space and 
effectively highlight the optimal solutions with respect to any number of multiple 
objectives.  
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SUMMARY AND CONCLUSIONS 
 

The Applied Research Lab Trade Space Visualizer (ATSV) is an effective software 
tool that can be applied to a range of complex systems design problems, including orbit 
transfer problems.  Using static exploration and data reduction to explore the trade space 
in a sample two-burn plane change problem permits the user to observe relevant trends 
regarding design objectives of interest, eventually allowing the designer to choose an 
optimal solution from the objective space.  As applied to the impulsive two-burn orbital 
mechanics problem in this paper, the ATSV’s trade space visualization made it easy to 
narrow down design inputs to generate more solutions in the region of interest.  Using 
preference controls, Pareto optimal solutions were obtained for a 28.5°, 500 km LEO to 
GEO impulsive maneuver with respect to total impulsive velocity change and time of 
flight. 
 

In this work, the trade space exploration capabilities of the ATSV have been 
illustrated for a simple orbit transfer problem.  This software can be used for much more 
complex orbital mechanics problems involving both continuous and non-continuous 
solutions.  Future applications of the ATSV’s trade space visualization capabilities 
include exploration of low-thrust orbital maneuvers or satellite constellation design 
optimization.  Furthermore, attractor and/or Pareto based sampling could be applied to a 
somewhat less predictable orbital mechanics problem to provide a means for an effective 
demonstration of ATSV-model integration. 
 

The Applied Research Lab Trade Space Visualizer is available for use in any 
technical field and can be acquired for free for evaluation purposes at the ATSV website: 
http://www.tradespaceexploration.psu.edu/ 
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