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Trade space exploration is a promising decision-making paradigm that provides a visual 
and intuitive means for formulating, adjusting, and ultimately solving multi-objective design 
optimization problems.  This is achieved by combining multi-dimensional data visualization 
techniques with visual steering commands to allow designers to “steer” the optimization 
process while searching for the best, or Pareto optimal, designs.  In this paper, we investigate 
the impact of constraint handling on the trade space exploration process.  Specifically we 
consider three different constraint handling methods: (1) no constraint handling, (2) manual 
constraint handling, and (3) automatic constraint handling, and assess their impact on the 
efficiency and effectiveness of the visual steering commands used to explore the trade space.  
We find that the performance of the constraint handling method is highly correlated with 
the visual steering command that is being used and is consistent with the user’s a priori 
knowledge about the constraints, which is reflected in how constraints are handled in each 
method.  The implications of these findings on the trade space exploration process are also 
discussed in conjunction with future work. 

I.  Introduction 
NGINEERING designers frequently use optimization-based tools and approaches to help them make decisions 
when designing complex systems such as automobiles, aircraft, and spacecraft.  Designing complex systems 

such as these requires tradeoffs between multiple conflicting and competing objectives, and trade space exploration 
is a promising alternative to optimization-based approaches for solving these types of problems.  Trade space 
exploration provides a visual and more intuitive means for formulating, adjusting, and ultimately solving multi-
objective design optimization problems and is an embodiment of the Design by Shopping paradigm advocated 
nearly a decade ago by Balling1 based on his work with a group of urban planners.  In short, the goal for Balling and 
his team was to develop a zoning plan for a large city while satisfying multiple objectives (12 in total) such as 
minimum traffic congestion and maximum green space.2  In their first iteration, they obtained a relative ranking of 
the importance of these objectives and then optimized the plan for the city.  Upon completion, they presented the 
results to the urban planners, which included a graphical description of the proposal city layout.  The urban planners 
felt that the plan presented did not reflect their true desires and adjusted their preference, and the process was 
repeated for several iterations.  The team modified their approach from optimizing to a single design to presenting a 
set of best designs, namely, the set of Pareto points.  They created graphical tools to help the urban planners explore 
the Pareto front, and they used this information to obtain what they considered to be the best design.   

This is one example of many that reinforces the notion that designers want to be able to “shop” for the best 
design, to gain intuition about trades, to see what is feasible and what is not, and to learn about their alternatives 
before making a decision.  Balling1 has noted that the traditional optimization-based design process of “1) formulate 
the design problem, 2) obtain/develop analysis models, and 3) execute an optimization algorithm” often leaves 
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designers unsatisfied with their results because the problem is usually improperly formulated: “the objectives and 
constraints used in optimization were not what the owners and stakeholders really wanted…in many cases, people 
don’t know what they really want until they see some designs”.  Similarly, Shanteau3 observed that when people are 
dissatisfied with the results of a rational decision making process, they often change their ratings to achieve their 
desired result.  Meanwhile, Wilson and Schooler4 found that people do worse at some decision tasks when asked to 
analyze the reasons for their preferences or evaluate all the attributes of their choices.   

In this paper, we present results from ongoing research that is investigating multi-dimensional visualization tools 
and visual steering commands to support the trade space exploration process.5  In particular, we investigate the 
impact of constraint handling on the trade space exploration process.  We consider three different constraint 
handling methods – no constraint handling, manual constraint handling, and automatic constraint handling – and 
assess their impact on the efficiency and effectiveness of the visual steering commands used to explore the trade 
space.  Related work and our previous work are summarized next, and the wing design problem used in this study is 
described in Section III.  The experimental set-up and results of our study are presented in Section IV, and closing 
remarks and future work are discussed in Section V along with the implications of the results. 

II.  Related and Previous Work 
The notion of trade space exploration is most akin to work in computational steering whereby the user interacts 

with a simulation during the optimization process to help “steer” the search process toward what looks like an 
optimal solution.  The user, or designer in our case, observes some sort of a visual representation of the optimization 
process and then uses intuition, heuristics, and/or some other methods to adjust the design space to move toward 
something that may not have been intuitive at the beginning of the simulation.  For instance, Kesavadas and Sudhir6 
created large-scale manufacturing simulations by allowing users to make quick changes “on-the-fly” and continue 
with the simulation.  Wright, et al.7 used computational steering to design the geometry and select the grade of glass 
for a furnace.  Visual Design Steering8,9 allows users to stop and redirect the optimization process to improve the 
solution; however, their visualization capabilities are currently limited to 2-D and 3-D representations of constraints 
and objectives.  Messac and Chen10 proposed an interactive visualization method wherein the progress of the 
optimization is visualized – but not steered – throughout the process.  Michalek and Papalambros11 allow designers 
to “dynamically change the optimization representation on-the-fly by adding, deleting, and modifying objectives, 
constraints, and structural units” but their methodology is specific to the architectural layout problems that they 
solve.  Madar, et al.12 are investigating the effects of human interaction on a particular optimization algorithm, 
namely, particle swarm optimization.  By using their visual, cognitive, and strategic abilities, users can improve the 
performance of the computer search algorithm by combining expert knowledge with computational power.  Scott, et 
al.13 investigated the effects of integrating humans into the optimization process and also found that “combining the 
human’s superior intelligence with the computer’s superior computational speed can result in better solutions than 
neither could produce alone”.  Additional advantages of such approaches include learning about the problem as well 
as the interrelationships between objectives and having the ability to guide the solution process in a desired direction 
and possibly even changing one’s mind while learning.14  Solutions generated through human interaction are better 
understood by the user than solutions returned by an optimization algorithm.  Moreover, the computational costs can 
be significantly reduced since only solutions of interest to the decision-maker are generated.13 

As part of our work in trade space exploration, collaborations between researchers at Penn State University and 
the Applied Research Laboratory (ARL) have led to the development of the ARL Trade Space Visualizer 
(ATSV).15,16  The ATSV is a Java-based application that is capable of visualizing multi-dimensional trade spaces 
using glyph, 1-D and 2-D histogram, 2-D scatter, scatter matrix, and parallel coordinate plots, linked views,17 and 
brushing.18  Figure 1 shows several examples of the multi-dimensional data visualization capabilities in ATSV.  We 
note that the 3D glyph plot (top left) can display up to seven dimensions by assigning variables to the x-axis, y-axis, 
z-axis, size, color, orientation, transparency of the glyph icons .   

The design variable (input) and performance (output) data for different alternatives can either be generated off-
line and then read into ATSV for visualization and manipulation or it can be generated dynamically “on-the-fly” by 
linking a simulation model directly with ATSV using its Exploration Engine capability.5  If the simulation model is 
too computationally expensive to be executed in real-time, then low-fidelity metamodels can be constructed and 
used as approximations for quickly searching the trade space.19  Once this link to the simulation model is in place, 
ATSV provides a suite of controls to help designers navigate and explore the trade space, including visual steering 
commands to (1) randomly sample the design space, (2) search near a point of interest, (3) search in a direction of 
preference, or (4) search for the Pareto front.  A summary of each type of sampler follows; we refer the reader to 
Ref. 5 for more details. 
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Figure 1. Multi-dimensional data visualization capabilities in ATSV. 

1) Design space samplers are used to populate the trade space and are typically invoked if there is no initial data 
available.  The user can sample the design space manually using slider bar controls for each input dimension or 
randomly.  When sampling randomly, the user specifies the number of samples to be generated and the bounds of 
the multi-dimensional hypercube of X.  Monte Carlo sampling then randomly samples the inputs – drawing from a 
uniform, normal, or triangular distribution – and executes the simulation model, storing the corresponding output in 
the database.  The bounds of the design variables can be reduced at any point to bias the samples in a given region if 
desired.  An example is shown in Figure 2 where the region of interest is for the two design variables (A, B) < 0.5.   

 

 
 (a) 100 initial samples (b) 100 new samplers in a reduced region of interest 

Figure 2. Example of design space sampler. 
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2) Point samplers, also referred to as attractors, are used to generate new sample points near a user-specified 
location in the trade space.  The attractor is specified in the ATSV interface with a graphical icon  that identifies 
an n-dimensional point in the trade space, and then new sample points are generated near the attractor – or as close 
as they can get to it.  Unbeknownst to the user, the attractor generates new points using the Differential Evolution 
(DE) algorithm,20 which assess the fitness of each new sample based on the normalized Euclidean distance to the 
attractor.  As the population evolves in DE, the samples get closer and closer to the attractor.  An example is shown 
in Figure 3 where the user specifies an attractor to fill in a “gap” in the trade space (see Figure 3(a)).  The new 
samples cluster tightly around Attractor_1 as seen in Figure 3(b). 

 

   
 (a) 100 initial samples (b) New samples generated near attractor 

Figure 3. Example of point sampler using an attractor. 

3) Preference samplers allow users to populate the trade space in regions that perform well with respect to a 
user-defined preference function.  New sample points are generated again by using the DE algorithm, but the fitness 
of each sample is now defined by the user’s preference instead of the Euclidean distance.  An example of the 
preference sampler is shown in Figure 4.  Using ATSV’s brushing and preference controls, the user specifies a 
desire to minimize Obj1 and maximize Obj3 with equal weighting (see Figure 4(a)).  We currently employ a linear 
weighted sum of the user’s stated preferences, but other preference functions could be implemented just as easily.  
Figure 4(b) shows the initial samples shaded based on preference, and Figure 4(c) shows the new samples, where the 
concentration of points increases in the direction of preference, namely, the upper left hand corner of the plot.   

 

 

(a) Brush/Preference control settings used to indicate a user’s preferences 

   
 (b) Initial samples shaded based on preference (c) New samples generated in the direction of preference 

Figure 4. Example of Brush/Preference controls and preference sampler. 
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4) Pareto samplers are used to bias the sampling of new designs in search of the Pareto front once the user has 
defined his/her preferences on the objectives.  The Pareto sampler uses the Pareto Differential Evolution algorithm 
developed by Madavan,21 which differs from DE in terms of how selection is performed.  In particular, a non-
dominated sorting procedure is implemented at the end of a generation to select the best NP individuals from the 
pool of parents and children – DE only competes children against their own parent vectors.20  An example of this 
sampler is shown in Figure 5.  Using the same preference as before (i.e., minimize Obj1 and maximize Obj3 with 
equal weighting), Figure 5(a) shows the Pareto points in the initial samples while Figure 5(b) shows the Pareto front 
after executing 7 generations of the DE with a population size of 25 points.  The points are also shaded to indicate 
the region of high (red) and low (blue) preference along the Pareto front. 
 

   
 (a) Initial samples (Pareto points denoted by +) (b) New samples generated along Pareto front  

Figure 5. Example of Pareto sampler. 

In their current implementation, none of these visual steering commands explicitly considers constraints when 
exploring the trade space unless they are hard-coded into the underlying simulation model used for analysis.  This is 
because in our approach to trade space exploration, we advocate exploring the entire trade space first, feasible and 
infeasible, and then “brushing out” (i.e., filtering) infeasible designs using the Brush/Preference controls in ATSV.15  
This approach works well since many of the actual constraint limits are imposed subjectively by the designers based 
on their experience; however, in tightly coupled or highly constrained systems, there may only be a narrow band of 
feasible designs, and exploring the entire trade space may yield many solutions that are truly infeasible.  Therefore, 
having the capability to enforce constraints during the exploration process may increase its efficiency and 
effectiveness, i.e., allow designers to find better designs with fewer function evaluations.  Consequently, the 
objective in this study is to investigate the impact of constraint handling on the trade space exploration process when 
using these visual steering commands.  The wing design problem used for this study is described next.  The 
constraint handling methods and experimental set-up are described in Section IV along with the results. 

III.  Wing Design Problem 
The wing design problem was developed by Simpson and Meckesheimer22 and involves sizing the wing of an 

aircraft to minimize its cost subject to constraints on range, buffet altitude, and takeoff field length.  Six design 
variables (inputs) are used to size the wing:  

1) Semi-span, x1  
2) Aspect ratio, x2 
3) Sweep angle of quarter chord, x3 
4) Taper ratio, x4 
5) Sparbox root chord, YCoff, x5 
6) Fan diameter, x6 
The aspect ratio, taper ratio, and semi-span affect the 

overall wing area and geometry as shown in Figure 6, 
while the sweep angle defines the leading edge sweep of 
the wing at the quarter chord.  The sparbox root chord, 
YCoff, defines the width of the sparbox at the wing 
centerline as shown in the figure.  Finally, the fan 
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diameter is used to scale the diameter of the nacelle mounted underneath the wing.  All design variables are scaled to 
vary between 0 and 1 based on their lower and upper bounds, respectively. Figure 6.  

Analysis for the wing design problem is achieved using second-order response surface models that relate the six 
design variables to the four performance variables (responses) of interest, namely, Cost, Range, Buffet Altitude, and 
Takeoff Field Length (TOFL).22  Sample data to construct these response surfaces were obtained from 243-point 
orthogonal array, of which only 200 points provided feasible designs.  The response surface models are constructed 
using ordinary least squares regression in the JMP® software, and with the exception of Buffet Altitude, they are full 
second-order models that include first-order, second-order, and two-factor interaction terms for all six design 
variables.  The response surface model for Buffet Altitude does not include Fan Diameter, x6, since this variable 
does not have a significant effect; hence, this response surface model is a full second-order model of only the 
remaining five design variables.  The resulting response surface equations for Cost, Range, TOFL, and Buffet 
Altitude are included in the Appendix.  We note that these responses have been normalized to range between 0 and 1 
based on the minimum and maximum observed values, respectively. 

The original optimization problem includes only a single objective, Cost, which is to be minimized, with 
constraints on the remaining performance variables.22  We modified the optimization problem for this study to make 
it multi-objective by minimizing Cost as well as maximizing Range as follows:  

 Minimize:  Cost (1) 
 Maximize: Range 
 Subject to:  Range > 0.589 
  Buffet altitude > 0.603 
  TOFL < 0.377 

The wing design problem is especially well suited for this study.  Preliminary experiments with expert users 
found that the method for constraint display significantly impacted a user’s search process – those that saw fewer 
constraints in the graphical display felt that they had greater freedom to explore the trade space and ultimately found 
better solutions given the tightly constrained nature of the problem.22  The next section describes the experimental 
set-up for this study, including the different constraint handling methods that are compared, along with the results. 

IV.  Experimental Study 
The objective in this study is to investigate the impact of constraint handling on the trade space exploration 

process.  This is done within the context of the wing design problem and ATSV; however, the procedures and results 
are applicable to problems of a similar nature and any trade space exploration process, regardless of the software. 

A. Experimental Set-Up 
For this study, we evaluate three methods for handling constraints when using the visual steering commands 

within ATSV: (1) no constraint handling, (2) manual constraint handling, and (3) automatic constraint handling.  For 
the no constraint handling case, the user ignores the predefined constraints specified for the wing design problem, 
simulating the situation in which the only a priori knowledge about the problem is the desire to minimize Cost and 
maximize Range.  Constraints are only applied at the end of the trade space exploration process in order to select the 
best designs that satisfy Eq. (1).  In the manual constraint handling case, the user treats the constraints as objectives 
when exploring the design space by specifying directions of preference that will ensure the constraints are satisfied.  
In this case, the user specifies not only to minimize Cost and maximize Range when exploring the trade space but 
also to maximize Buffet Altitude and minimize Take-off Field Length.  By maximizing Buffet Altitude (and Range) 
and minimizing Take-off Field Length, the exploration process should gravitate toward regions in the trade space 
that will be feasible after the constraint limits are imposed (via the brush controls in ATSV).   

In the automated constraint handling case, the user specifies preferences and constraints prior to implementing 
any of the visual steering commands such that the constraints are explicitly (i.e., automatically) handled during the 
exploration process.  This is achieved by integrating the constraint domination work of Deb et al.,23 into the DE and 
Pareto DE algorithms used in ATSV.  In particular, the domination of two solutions i and j is modified to be:  

 
A solution i constraint-dominates solution j if any of the following conditions are true: 
1) i is feasible and j is infeasible: i constraint-dominates j 
2) i and j are feasible: if i Pareto dominates j, then i constraint-dominates j 
3) i and j are infeasible: if i dominates j in the constraint-violation space, then i constraint-dominates j 
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Any ties for dominance are broken by the crowding diversity metric implemented by Deb et al.23 and used by 
Madavan.21  Constraint limits are obtained directly from the user-specified settings in the brush controls in ATSV 
(see Figure 4(a) for an example).  Constraint dominance is implemented within all three DE-based samplers – point, 
preference, and Pareto samplers – in the automated constraint handling case with the goal of increasing the number 
of feasible points obtained when using visual steering commands in ATSV.   

To compare the performance of these three constraint handling methods, we implement four sampler trials for 
each constraint handling method based on the visual steering commands available in ATSV:  

1) Basic (design) sampler – provides a “baseline” for comparison by randomly searching the design space.  
2) Point (attractor) sampler – placed at various locations within the trade space to generate new design points. 
3) Preference sampler – used to drive the exploration process in the direction of preference. 
4) Pareto sampler – used to generate points along the Pareto front. 

Each sampler trial is allocated roughly 10,000 function evaluations, i.e., the user is limited to generating 10,000 
points with a given sampler.  The 10,000 point limit was used so that enough points were generated to enable 
comparisons between the sets of sampler trials across all three constraint handling methods, yet did not allow for an 
exhaustive search in which all of the resulting Pareto fronts would be found.  Each sampler trial was performed three 
times (i.e., each trial had three versions denoted v1, v2, v3) to ensure that the results obtained from the sampler were 
reliable and not due to the inherent randomness in the DE algorithm.   

The implementation details for each sampler trial are summarized in Tables A.1 - A.3, respectively, for the no 
constraint handling, manual constraint handling, and automated constraint handling methods.  Figure 7(a) shows the 
Brush/Preference controls for the wing design problem prior to any user-defined settings.  The settings for the Pareto 
and preference sampler trials are shown in Figure 7(b) for the no constraint handling case.  The Brush/Preference 
controls for the preference and Pareto samplers for the manual constraint handling case are shown in Figure 7(c).  At 
the end of each trial the settings shown in Figure 7(d) were applied so that only feasible Pareto points were obtained.  
For the automatic constraint handling case, the Brush/Preference controls were also set as shown in Figure 7(d).  
Since the basic sampler randomly searches the design space, it is not affected by the Brush/Preference controls 
regardless of how constraints are handled; the user simply provides the settings in Figure 7(d) to obtain the feasible 
Pareto points after 10,000 points are generated.  Likewise the point (attractor) sampler is specified directly in the 
trade space and is only impacted by the Brush/Preference controls in the automated constraint handling case when 
the underlying DE is modified to include constraint-dominance during the exploration process. 

 

  
 (a) No constraints specified (b) Settings for preference and Pareto samplers  
  without constraint handling 

  
 (c) Settings for manual constraint handling trials (d) Settings for automatic constraint handling trials and  
  to obtain final feasible Pareto points in all other trials 

Figure 7. Brush/Preference controls for all trials. 

We compare the 36 sets of results (= 3 constraint handling methods x 4 trials x 3 versions of each trial) both 
graphically and quantitatively.  The graphical analysis entails overlaying the feasible Pareto fronts from each version 
of each trial in different colors for each constraint handling method to visualize the differences in the resulting 
Pareto fronts.  The quantitative analysis involves computing the following metrics for each set of results: 
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1) Percentage of feasible points in the final set  
2) Number of Pareto points in the final set (Note: points must be feasible in order to be considered Pareto)  
3) Percentage of the non-dominated points in the combined Pareto front (Note: the combined Pareto front is 

obtained by combining the Pareto points from the solution sets from a set of four trials and then removing 
dominated points). 

The first metric assesses the efficiency of the exploration process: a small percentage of feasible points indicates that 
many function evaluations were “wasted” generating infeasible designs while a high percentage of feasible points 
indicates a more efficient use of function evaluations.  The second metric measures the number of best points that 
were found, i.e., feasible non-dominated points that satisfy Eq. (1).  This metric provides a means of assessing the 
relative effectiveness of the exploration process for a given trial.  Finally, the third metric compares the effectiveness 
of a given constraint handling method across all four trials by indicating which approach yielded the most non-
dominated points after 10,000 function evaluations.   

B. Experimental Results 
The resulting feasible Pareto fronts for the no constraint handling, manual constraint handling, and automatic 

constraint handling methods are shown graphically in Figure 8, Figure 9, and Figure 10, respectively.  The plots 
within each figure are sorted by version (i.e., v1, v2, v3) of the sampler trial and color-coded to show how the 
resulting Pareto fronts compare to one another.  In all of these plots, the light blue points are the feasible Pareto 
points obtained from the basic sampler, the dark blue points are the feasible Pareto points obtained from the point 
(attractor) sampler, the yellow points are the feasible Pareto points obtained from the Pareto sampler, and the red 
points are the feasible Pareto points obtained from the preference sampler.  The combined Pareto front is shown on 
the right-hand side of each figure, where the non-dominated solutions are denoted by ‘+’ and the same color coding 
is used to indicate from which sampler trial the non-dominated point were obtained.   

The differences between the three constraint handling methods are readily apparent based on visual comparison 
of the plots in each of these figures.  First, by comparing left-hand plots (a), (c), and (e) in each figure, we note 
similarities among the resulting Pareto fronts from each version (v1, v2, v3) of each trial that uses a different 
sampler.  This indicates that the results obtained are reliable and achieved as a result of the methods used, not due to 
the inherent randomness in the underlying DE algorithm or its creation of initial seeds.   

Next, we note a strong correlation between constraint handling method and trial in terms of which sampler is the 
most effective and most ineffective.  In Figure 8, the basic sampler trials yield the most Pareto points in all three 
versions (see Figure 8(a), Figure 8(c), and Figure 8(e)) of the no constraint handling case, and they contribute the 
majority of the Pareto points to the combined Pareto fronts as seen in Figure 8(b), Figure 8(d), and Figure 8(f).  The 
attractor performs the worst in the no constraint handling case, but it is the most effective sampler in the manual 
constraint handling cases shown in Figure 9.  The attractor sampler contributes the majority of the Pareto points to 
the combined Pareto fronts shown in Figure 9(b), Figure 9(d), and Figure 9(f) while the preference sampler yields 
the worst points in the manual constraint handling case.  Meanwhile, in the automatic constraint handling cases in 
Figure 10, the preference and Pareto samplers are the most effective.  As seen in Figure 10(b), Figure 10(d), and 
Figure 10(f), the preference sampler tends to contribute the points in the low Cost region to the combined Pareto 
front while the Pareto sampler favors designs the high Range region.  Finally, we note that the basic sampler 
performs the worst in the automatic constraint handling case, yielding points that are dominated by nearly all of the 
other samplers.   

The quantitative assessment of each trial’s performance confirms these qualitative findings.  Table 1 summarizes 
the results for each version of each sampler trial for the three constraint handling methods using the aforementioned 
metrics, namely, percentage of feasible points, number of feasible Pareto points, and percentage of non-dominated 
points in the combined Pareto front.  In the no constraint handling case, the basic sampler consistently yields the 
highest percentage of feasible points, finds the most Pareto points, and contributes 61-89% of the points (70% on 
average) to the combined Pareto front.  The preference sampler contributes the next highest percentage of non-
dominated points, while the attractor and Pareto samplers offer less than 2% of the non-dominated points in the 
combined front; however, on average 1% or less of the points from the preference, Pareto, and attractor samplers are 
feasible – conversely, 99% of the function evaluations used in these trials yield infeasible points, which is a highly 
inefficient way of exploring the trade space.  In the manual constraint case, the attractor trials outperform the other 
samplers, returning an average of nearly 30% feasible points and contributing more than 87% of the non-dominated 
points to the combined Pareto front, on average.  The Pareto sampler does slightly better than in the no constraint 
handling case, and the basic sampler trials yield comparable results to the Pareto sampler.  The preference sampler 
performs the worst by far, offering zero non-dominated points to the combined Pareto front in all three versions.   
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 (a) No constraint handling trials (v1) (b) Combined Pareto front v1 (Pareto points denoted by +) 

  

 (c) No constraint handling trials (v2) (d) Combined Pareto front v2 (Pareto points denoted by +) 

  

 (e) No constraint handling trials (v3) (f) Combined Pareto front v3 (Pareto points denoted by +) 

Figure 8. Individual and combined Pareto fronts obtained with no constraint handling. 
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 (a) Manual constraint handling trials (v1) (b) Combined Pareto front v1 (Pareto points denoted by +) 

  

 (c) Manual constraint handling trials (v2) (d) Combined Pareto front v2 (Pareto points denoted by +) 

  

 (e) Manual constraint handling trials (v3) (f) Combined Pareto front v3 (Pareto points denoted by +) 

Figure 9. Individual and combined Pareto fronts from manual constraint handling trials. 
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 (a) Automatic constraint handling trials (v1) (b) Combined Pareto front v1 (Pareto points denoted by +) 

  

 (c) Automatic constraint handling trials (v2) (d) Combined Pareto front v2 (Pareto points denoted by +) 

  

 (e) Automatic constraint handling trials (v3) (f) Combined Pareto front v3 (Pareto points denoted by +) 

Figure 10. Individual and combined Pareto fronts from automatic constraint handling trials. 
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Table 1. Performance of each version of each sampler trial for each constraint handling method. 

No Constraint Handling Manual Constraint Handling Automatic Constraint Handling  
Metric Basic Attractor Pareto Preference Basic Attractor Pareto Preference Basic Attractor Pareto Preference 

v1 

% 
Feasible 

6.22 0.67 0.27 1.17 5.77 28.42 7.71 0.57 5.59 9.96 37.46 6.20 

# Pareto 
Points 16 3 5 15 23 47 17 5 17 31 44 56 

% 
Combined 

Pareto 
Front 

61.90 0.00 0.00 38.10 2.13 95.74 2.13 0.00 0.00 2.53 27.85 69.62 

Combined 
Front # 
Points 

21 47 79 

v2 

% 
Feasible 

6.24 0.68 0.15 1.33 5.97 28.16 6.16 1.63 6.31 9.35 39.97 4.34 

# Pareto 
Points 20 4 5 8 16 44 16 4 19 27 63 20 

% 
Combined 

Pareto 
Front 

61.11 5.56 0.00 33.33 13.33 73.33 13.33 0.00 0.00 6.56 60.66 32.79 

Combined 
Front # 
Points 

18 30 61 

v3 
% 

Feasible 
5.63 0.67 0.14 0.42 5.93 33.38 7.52 0.80 6.27 10.03 43.02 13.97 

# Pareto 
Points 17 3 7 4 16 68 16 3 13 29 65 205 

% 
Combined 

Pareto 
Front 

88.89 0.00 5.56 5.56 1.47 92.65 5.88 0.00 0.41 1.22 14.69 83.67 

Combined 
Front # 
Points 

18 68 245 

Average of v1, v2, v3 
% 

Feasible 
6.03 0.67 0.19 0.97 5.89 29.99 7.13 1 6.06 9.78 40.15 8.17 

# Pareto 
Pointsa 18 3 6 9 18 53 16 4 16 29 57 94 

% 
Combined 

Pareto 
Front 

70.63 1.85 1.85 25.66 5.64 87.24 7.11 0 0.14 3.44 34.4 62.03 

Combined 
Front # 
Pointsa 

19 48 128 

a The average # of Pareto points and # points in the combined Pareto front are rounded to the nearest integer value. 
 
In the automatic constraint handling case, the Pareto sampler tends to find the highest percentage of feasible 

points (40% on average).  It contributes nearly 61% of the non-dominated points to the combined Pareto front in one 
of the trials (v2), but the preference sampler contributes the most non-dominated points to the combined Pareto front 
on average (62%).  Surprisingly, the preference sampler tends to have a rather low percentage of feasible points (8% 
on average) while contributing the most non-dominated points to the combined Pareto front in two out of the three 
trials (v1 and v3).  The attractor trials yield more feasible points on average (10%) but contribute less than 4% of the 
non-dominated points to the combined Pareto front.  The basic sampler performs the worst in the automatic 
constraint handling case as noted earlier (see Figure 10).  Finally, we note that the automatic constraint handling 
method leads to the highest number of non-dominated points in the combined Pareto front on average across trials. 
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To understand why the attractor, preference, and Pareto 
samplers perform so poorly in the no constraint handling case, 
consider Figure 11, which shows the Pareto fronts for a set of 
points (not from an actual trial).  The infeasible points are 
shown in gray, and the feasible points are shown in red – these 
red points are the points that remain after applying the 
Brush/Preference control settings shown in Figure 7(d).  
Before these controls are set to reveal the feasible region, the 
user would be inclined to place attractors along the infeasible 
region’s Pareto front since it dominates what is the resultant 
feasible region.  Due to the user’s bias to explore in this 
infeasible region, the only points generated in the feasible 
region come from random points generated by the DE 
algorithm; hence, the low percentage of feasible points.  The 
same logic applies to the Pareto and preference samplers, 
which would bias their sampling along the infeasible Pareto 
front when no constraint information is present, which also 
explains the low percentage of feasible points.  Since the basic 
sampler is sampling uniformly across the entire trade space, it 
outperforms the other samplers by chance.  Figure 11. 

In the manual constraint handling case, the basic sampler is unable to compete – it generates about the same 
percentage of feasible points and the same number of Pareto points as before, but the attractors excel in this case due 
to their placement in the trade space, i.e., they can be placed to minimize Cost and maximize Range while being just 
beyond the constraint limits for Range, TOFL, and Buffet Altitude.  The Pareto and preference samplers, on the 
other hand, suffer from the manner in which the constraints were handled manually, i.e., they “overshot” the desired 
region when minimizing TOFL and maximizing Buffet Altitude were added as separate objectives (instead of 
specifying them as constraints) to bias the sampling towards feasible designs.  Figure 12(a) shows the corresponding 
Pareto front for the Brush/Preference control settings for the manual constraint handling case (see Figure 7(c)).  The 
Pareto and preference samplers tried to generate points along this new four-dimensional front even though the 
desired Pareto front is located on the edge of the small colored region in Figure 12(b).  As a result, many evaluations 
were wasted exploring the infeasible space as indicated by the multitude of gray points in Figure 12(b).  This figure 
also provides an accurate representation of the size of the feasible region compared to the entire trade space.   

 

 (a) Pareto front of entire trade space (b) Pareto front of feasible space (gray points are infeasbile) 

Figure 12. Representation of Pareto front for manual constraint handling trials. 

In the automatic constraint handling case, the Pareto and preference samplers appear to have performed well for 
different reasons.  The Pareto sampler generated a much higher percentage of feasible points once it took the 
constraints into account – as the underlying DE population evolved, it found more and more feasible points based on 

 
Figure 11. Infeasible (gray) and feasible (red) 

Pareto fronts (+ denotes Pareto points). 



 
American Institute of Aeronautics and Astronautics 

 

14 

the constraint-dominance concept that we implemented.  The same goes for the preference sampler; however, the 
preference sampler concentrated its search in one direction, namely, the direction of preference, whereas the Pareto 
sampler tried to find the entire Pareto front.  As the search populations evolved, the preference sample outperformed 
the Pareto sampler since it was essentially searching along a line instead of along a two-dimensional front, leading to 
a higher percentage of non-dominated points, on average, for the preference sampler in the automatic constraint 
handling case.  This was seen earlier in Figure 10, which shows how the points from the preference sampler are 
confined to a small area along the front.  Meanwhile, the basic sampler continued to randomly explore the design 
space and performed about the same as before, verifying its consistency in how it was intended to operate.  The 
attractor samplers performed better than in the no constraint handling case, but they were not as effective in this case 
as they were in the manual constraint handling case since the user specified locations only in the Range-Cost trade 
space (see Table A.3) not the entire four-dimensional trade space (see Table A.2).   

V. Closing Remarks and Future Work 
Trade space exploration is a powerful alternative to optimization-based approaches for formulating, adjusting, 

and ultimately solving multi-objective design problems.  It provides a visual and more intuitive means for designers 
to explore the trade space by integrating multi-dimensional data visualization and visual steering commands.  As 
part of our ongoing investigations into the trade space exploration process, we examine the impact of constraint 
handling on the exploration process using a wing design example in this paper.  In particular, we examined three 
constraint handling methods – no constraint handling, manual constraint handling, and automatic constraint handling 
– and evaluated their impact on the efficiency and effectiveness of the four samplers available in the ATSV, namely, 
the basic, point (attractor), preference, and Pareto samplers.  Graphical and quantitative analysis determined that the 
performance of each sampler trial was highly correlated with the constraint handling method: the basic sampler 
performed best for the no constraint handling case, the point (attractor) samplers performed best in the manual 
constraint handling case, and the preference and Pareto samplers performed best in the automatic constraint handling 
case with the Pareto sampler being more efficient (based on the percentage of feasible points) and the preference 
sampler being more effective (based on the percentage of non-dominated points in the combined Pareto front).   

While initially surprising, the results are consistent with the user’s a priori knowledge about the constraints, 
which is reflected in how constraints are handled in each method.  The implications of these findings can be 
summarized as follows.  If users are uncertain about the constraint limits, then the basic sampler should be used to 
randomly search the trade space – this is equivalent to the no constraint handling case wherein the basic sampler 
offers consistent performance in terms of efficiency and effectiveness.  Meanwhile, if constraint limits are known 
and the user wants to explore directly along these boundaries to explore specific tradeoffs, then attractors should be 
used since they can be placed at specific locations in the trade space.  This is equivalent to the manual constraint 
handling case, wherein users may have some a priori knowledge about the constraints, but they want the flexibility 
to “push the boundaries” when looking for the best designs.  Finally, if constraint limits are fairly certain or if the 
problem is highly constrained with a small region of feasibility, then the Pareto and preference samplers are the best 
choice.  This is equivalent to the automatic constraint handling case, and users should select the preference sampler 
for maximum effectiveness when their preferences (i.e., important weighting for each objective) are known a priori 
and with a high degree of certainty.  If the importance weights are not know with a high degree of certainty, then the 
Pareto sampler should be used due to maximize efficiency while also finding good designs.   

This study is part of ongoing work to provide empirical evidence and quantify the benefits of putting designers 
back “in-the-loop” during the design optimization process.  Immediate extensions to this particular study include 
comparing the resulting Pareto fronts in each case against a “reference set” to determine how many of the non-
dominated points are in the actual Pareto front and using ε-dominance24 or s-Pareto25 filtering techniques to obtain a 
better representation of the number of different Pareto points found in each case.  Finally, similar tests should be 
conducted on problems of varying size and complexity, ranging from unconstrained to highly constrained in nature, 
to ensure that the results are indeed applicable to a wide range of design problems. 

Appendix 
The following equations are the second-order response surface models for the wing design problem.22 
 

Cost = 0.2854 - 0.005*x6 + 0.3109*x5 - 0.0122*x3 - 0.2095*x4 - 0.4836*x2 + 0.4431*x1 + 0.1037*x6*x 6 - 0.0592*x5*x 5 (A.1) 
- 0.0204*x3*x3 + 0.1057*x4*x4 + 0.2494*x2*x2 + 0.0218*x1*x1 + 0.0581*x6*x 5 + 0.0025*x6*x 3 + 0.0034*x6*x4  
+ 0.0502*x6*x2 - 0.0326*x6*x1 + 0.1254*x5*x3 - 0.1362*x5*x4 + 0.1664*x5*x2 - 0.4223*x5*x 1 + 0.1039*x3*x 4  
- 0.0155*x3*x2 - 0.0735*x3*x 1 - 0.1281*x4*x 2 + 0.2183*x4*x 1 - 0.2109*x2*x 1 
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Range = 0.3576 - 0.0329*x6 + 0.1978*x5 + 0.0149*x3 - 0.0389*x4 - 0.4652*x2 + 0.4453*x1 + 0.0149*x6*x6 - 0.051*x5*x5 (A.2) 
+ 0.0075*x3*x3 - 0.0229*x4*x4 + 0.0987*x2*x2 - 0.0188*x1*x1 - 0.0524*x6*x5 - 0.0272*x6*x 3 + 0.0281*x6*x 4  
- 0.0147*x6*x2 + 0.0083*x6*x1 + 0.1018*x5*x3 + 0.0563*x5*x4 - 0.0349*x5*x2 + 0.064*x5*x 1 + 0.0073*x3*x4  
+ 0.0176*x3*x2 + 0.0341*x3*x1 + 0.1063*x4*x2 - 0.0374*x4*x 1 + 0.0143*x2*x 1 

TOFL = 0.2884 - 0.2896*x6 + 0.3376*x5 + 0.0088*x3 - 0.0478*x4 - 0.1448*x2 + 0.1239*x1 + 0.0714*x6*x6 - 0.029*x5*x5 (A.3) 
+ 0.0148*x3*x3 + 0.0068*x4*x4 + 0.2251*x2*x2 + 0.1654*x1*x1 - 0.12*x6*x 5 - 0.0475*x6*x 3 + 0.0426*x6*x 4 
- 0.0486*x6*x2 - 0.1058*x6*x1 + 0.1712*x5*x3 + 0.0071*x5*x 4 - 0.0887*x5*x 2 + 0.0759*x5*x1 + 0.0028*x3*x4 
- 0.0056*x3*x2 + 0.064*x3*x 1 + 0.0063*x4*x 2 + 0.0456*x4*x 1 - 0.2902*x2*x 1 

Buffet altitude = 0.617 - 0.1221*x5 - 0.0485*x3 + 0.0141*x4 - 0.4507*x2 + 0.6968*x1 + 0.0248*x5*x 5 + 0.0277*x3*x3 (A.4) 
+ 0.011*x4*x 4 - 0.0873*x2*x 2 - 0.295*x1*x 1 - 0.061*x5*x 3 - 0.0789*x5*x4 + 0.0546*x5*x2 - 0.1674*x5*x 1  
- 0.0008*x3*x4 + 0.0422*x3*x2 - 0.0371*x3*x1 + 0.017*x4*x 2 - 0.0507*x4*x 1 + 0.2845*x2*x 1 

 
The following tables summarize the implementation details for each sampler trial for each constraint handling 

method. 

Table A.1. Description of sampler trials with no constraint handling. 

Basic (Total Points: 10,000) Pareto (Total Points: 10,080) 
- Basic sampler: 10,000 runs 
- Brush and preference controls (to obtain 
feasible and Pareto) data: 

- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

- Generation size set at 60 
- Brush and preference controls: 

- Maximize (100) Range 
- Minimize (-100) Cost 

- Pareto sampler: 10,000 runs 
- Brush and preference controls (to obtain feasible and Pareto) data: 

- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

Preference (Total Points: 10,080) Attractor (Total Points: 10,203) 
- Generation size set at 60 
- Brush and preference controls: 

- Maximize (100) Range 
- Minimize (-100) Cost 

- Preference sampler: Looped until 10,000 or 
more runs are reached 
- Brush and preference controls (to obtain 
feasible and Pareto) data: 

- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

- Basic Sampler: 25 runs 
- Generation size changed to 60 
- Point Attractor: # Runs set to 600 

- [Cost = 0.165, Range = 0.875] 
- [Cost = 0.087, Range = 0.643] 
- [Cost = 0.100, Range = 0.435] 
- [Cost = 0.165, Range = 0.524] 
- [Cost = 0.326, Range = 0.919] 
- [Cost = 0.228, Range = 0.732] 
- [Cost = 0.029, Range = 0.242] 
- [Cost = 0.040, Range = 0.362] 
- [Cost = 0.263, Range = 0.943] 
- [Cost = 0.383, Range = 0.995] 
- [Cost = 0.170, Range = 0.654] 
- [Cost = 0.047, Range = 0.446] 
- [Cost = 0.162, Range = 0.824] 
- [Cost = 0.188, Range = 0.747] 
- [Cost = 0.213, Range = 0.803] 
- [Cost = 0.143, Range = 0.530] 
- [Cost = 0.014, Range = 0.294] 

- Brush and preference controls (to obtain feasible and Pareto) data: 
- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 
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Table A.2. Description of manual constraint handling sampler trials. 

Basic (Total Points: 10,000) Pareto (Total Points: 10,080) 
- Basic sampler: 10,000 runs 
- Brush and preference controls (to obtain 
feasible and Pareto) data: 

- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

- Generation size changed to 60 
- Brush and preference controls: 

- Maximize Range 
- Minimize Cost 
- Minimize TOFL 
- Maximize BuffetAltitude 

- Pareto sampler: 10,000 runs 
- Brush and preference controls (to obtain feasible and Pareto) data: 

- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

Preference (Total Points: 10,446) Attractor (Total Points: 10,335) 
- Generation size changed to 60 
- Brush and preference controls: 

- Maximize (100) Range 
- Minimize (-100) Cost 
- Minimize (-100) TOFL 
- Maximize (100) BuffetAltitude 

- Preference sampler: Looped until 10,000 or 
more runs are reached 
- Brush and preference controls (to obtain 
feasible and Pareto) data: 

- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

- Basic Sampler: 25 runs 
- Generation size changed to 60 
- Point Attractor: # Runs set to 600 

- [Cost = 0.469, Range = 0.607, TOFL = 0.352, BuffetAltitude = 0.797] 
- [Cost = 0.592, Range = 0.749, TOFL = 0.317, BuffetAltitude = 0.779] 
- [Cost = 0.481, Range = 0.725, TOFL = 0.351, BuffetAltitude = 0.720] 
- [Cost = 0.539, Range = 0.800, TOFL = 0.351, BuffetAltitude = 0.720] 
- [Cost = 0.373, Range = 0.665, TOFL = 0.351, BuffetAltitude = 0.720] 
- [Cost = 0.320, Range = 0.662, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.656, Range = 0.813, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.644, Range = 0.836, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.495, Range = 0.773, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.407, Range = 0.708, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.323, Range = 0.637, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.648, Range = 0.823, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.483, Range = 0.774, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.425, Range = 0.729, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.672, Range = 0.847, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.598, Range = 0.823, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.635, Range = 0.844, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.358, Range = 0.690, TOFL = 0.370, BuffetAltitude = 0.720] 
- [Cost = 0.672, Range = 0.839, TOFL = 0.370, BuffetAltitude = 0.720] 

- Brush and preference controls (to obtain feasible and Pareto) data: 
- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 
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Table A.3. Description of automatic constraint handling sampler trials. 

Basic (Total Points: 10,000) Pareto (Total Points: 10,080) 
- Basic sampler: 10,000 runs 
- Brush and preference controls (to obtain 
feasible and Pareto) data: 

- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

- Generation size changed to 60 
- Brush and preference controls: 

- Maximize (100) Range ≥ 0.589 
- Minimize (-100) Cost 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

- Pareto sampler: 10,000 runs 
Preference (Total Points: 10,080) Attractor (Total Points: 10,000) 

- Generation size changed to 60 
- Brush and preference controls: 

- Maximize (100) Range ≥ 0.589 
- Minimize (-100) Cost 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

- Preference sampler: Looped until 10,000 or 
more runs are reached 

- Basic Sampler: 25 runs 
- Generation size changed to 60 
- Brush and preference controls: 

- Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 

- Point Attractor: # Runs set to 600 
- [Cost = 0.204, Range = 0.569] 
- [Cost = 0.442, Range = 0.721] 
- [Cost = 0.345, Range = 0.527] 
- [Cost = 0.488, Range = 0.700] 
- [Cost = 0.357, Range = 0.629] 
- [Cost = 0.492, Range = 0.713] 
- [Cost = 0.425, Range = 0.664] 
- [Cost = 0.510, Range = 0.757] 
- [Cost = 0.591, Range = 0.798] 
- [Cost = 0.349, Range = 0.675] 
- [Cost = 0.409, Range = 0.715] 
- [Cost = 0.564, Range = 0.809] 
- [Cost = 0.500, Range = 0.796] 
- [Cost = 0.600, Range = 0.800] 
- [Cost = 0.363, Range = 0.658] 
- [Cost = 0.455, Range = 0.761] 
- [Cost = 0.396, Range = 0.709] 

- Brush and preference controls (to obtain feasible and Pareto) data: 
- Minimize (-100) Cost  
- Maximize (100) Range ≥ 0.589 
- BuffetAltitude ≥ 0.603 
- TOFL ≤ 0.377 
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