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Trade space exploration is a promising decision-makg paradigm that provides a visual
and intuitive means for formulating, adjusting, and ultimately solving multi-objective design
optimization problems. This is achieved by combimg multi-dimensional data visualization
techniques with visual steering commands to allow ebigners to “steer” the optimization
process while searching for the best, or Pareto dptal, designs. In this paper, we investigate
the impact of constraint handling on the trade spage exploration process. Specifically we
consider three different constraint handling method: (1) no constraint handling, (2) manual
constraint handling, and (3) automatic constraint landling, and assess their impact on the
efficiency and effectiveness of the visual steerimgpmmands used to explore the trade space.
We find that the performance of the constraint handing method is highly correlated with
the visual steering command that is being used anid consistent with the user’'sa priori
knowledge about the constraints, which is reflecteéh how constraints are handled in each
method. The implications of these findings on thé&rade space exploration process are also
discussed in conjunction with future work.

[. Introduction

NGINEERING designers frequently use optimizatiosdzhtools and approaches to help them make degision

when designing complex systems such as automolilesaft, and spacecraft. Designing complex syste
such as these requires tradeoffs between multgoidlicting and competing objectives, and trade spexploration
is a promising alternative to optimization-basegrapches for solving these types of problems. é&rspace
exploration provides a visual and more intuitiveame for formulating, adjusting, and ultimately soty multi-
objective design optimization problems and is arbetiment of the Design by Shopping paradigm adwstat
nearly a decade ago by Balliigased on his work with a group of urban plannénsshort, the goal for Balling and
his team was to develop a zoning plan for a latige wehile satisfying multiple objectives (12 in &} such as
minimum traffic congestion and maximum green sgada.their first iteration, they obtained a relativanking of
the importance of these objectives and then opéichithe plan for the city. Upon completion, thegganted the
results to the urban planners, which included algcal description of the proposal city layout. eTirban planners
felt that the plan presented did not reflect theile desires and adjusted their preference, anditheess was
repeated for several iterations. The team modifiedt approach from optimizing to a single dedigmpresenting a
set of best designs, namely, the set of Paretdgoifhey created graphical tools to help the ugilanners explore
the Pareto front, and they used this informatioalitain what they considered to be the best design.

This is one example of many that reinforces theonothat designers want to be able to “shop” far Hest
design, to gain intuition about trades, to see vihideasible and what is not, and to learn aboeir thlternatives
before making a decision. Ballihbas noted that the traditional optimization-bagesign process of “1) formulate
the design problem, 2) obtain/develop analysis fsodend 3) execute an optimization algorithm” offeaves
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designers unsatisfied with their results becauseptioblem is usually improperly formulated: “thejextiives and
constraints used in optimization were not whatdhaers and stakeholders really wanted...in many ¢caseple
don’t know what they really want until they see sodesigns”. Similarly, Shantehobserved that when people are
dissatisfied with the results of a rational deaisinaking process, they often change their ratingachieve their
desired result. Meanwhile, Wilson and Schobleund that people do worse at some decision taslen asked to
analyze the reasons for their preferences or etemblbthe attributes of their choices.

In this paper, we present results from ongoingaresdethat is investigating multi-dimensional viseation tools
and visual steering commands to support the tradeesexploration process.In particular, we investigate the
impact of constraint handling on the trade spacglogation process. We consider three differentstaint
handling methods — no constraint handling, manoaktraint handling, and automatic constraint hawgd# and
assess their impact on the efficiency and effengs of the visual steering commands used to expla trade
space. Related work and our previous work are sanaed next, and the wing design problem usedimstudy is
described in Section Ill. The experimental setanp results of our study are presented in SecWoramd closing
remarks and future work are discussed in Sectiatoxig with the implications of the results.

Il. Related and Previous Work

The notion of trade space exploration is most akiwork incomputational steeringvhereby the user interacts
with a simulation during the optimization processhelp “steer” the search process toward what Idikes an
optimal solution. The user, or designer in outecabserves some sort of a visual representatitimeadptimization
process and then uses intuition, heuristics, armstdare other methods to adjust the design spaceot® noward
something that may not have been intuitive at #girning of the simulation. For instance, Kesasaatad Sudhfr
created large-scale manufacturing simulations ywéthg users to make quick changes “on-the-fly” awhtinue
with the simulation. Wright, et &lused computational steering to design the georeetryselect the grade of glass
for a furnace. Visual Design Steerifigllows users to stop and redirect the optimizaficocess to improve the
solution; however, their visualization capabilitee® currently limited to 2-D and 3-D representadgiof constraints
and objectives. Messac and CHeproposed an interactive visualization method winetee progress of the
optimization is visualized — but not steered — tigtoout the process. Michalek and Papalantbailow designers
to “dynamically change the optimization represaatabn-the-fly by adding, deleting, and modifyinjectives,
constraints, and structural units” but their mettiody is specific to the architectural layout prek that they
solve. Madar, et af are investigating the effects of human interactiona particular optimization algorithm,
namely, particle swarm optimization. By using thesual, cognitive, and strategic abilities, useas improve the
performance of the computer search algorithm bylinimg expert knowledge with computational pow&cott, et
al.® investigated the effects of integrating humane the optimization process and also found that ‘mioing the
human’s superior intelligence with the computedperior computational speed can result in bettartisms than
neither could produce alone”. Additional advantagésuch approaches include learning about thelemoas well
as the interrelationships between objectives anthbdhe ability to guide the solution process idesired direction
and possibly even changing one’s mind while leayifn Solutions generated through human interactiorbateer
understood by the user than solutions returnechbypéimization algorithm. Moreover, the computatibcosts can
be significantly reduced since only solutions déiest to the decision-maker are generated.

As part of our work in trade space explorationjatmbrations between researchers at Penn State nsitjvand
the Applied Research Laboratory (ARL) have led be tdevelopment of the ARL Trade Space Visualizer
(ATSV).">® The ATSV is a Java-based application that is lpaf visualizing multi-dimensional trade spaces
using glyph, 1-D and 2-D histogram, 2-D scattesti®r matrix, and parallel coordinate plots, linkeews;’ and
brushing'® Figure 1 shows several examples of the multi-disienal data visualization capabilities in ATSV.eW
note that the 3D glyph plot (top left) can displgyto seven dimensions by assigning variablesdotaxis, y-axis,
z-axis, size, color, orientation, transparencyhefglyph icons .

The design variable (input) and performance (oQtdata for different alternatives can either beegated off-
line and then read into ATSV for visualization amdnipulation or it can be generated dynamically-tiee-fly” by
linking a simulation model directly with ATSV usiritg Exploration Engine capabilify.If the simulation model is
too computationally expensive to be executed in-tiege, then low-fidelity metamodels can be consted and
used as approximations for quickly searching taddrspac& Once this link to the simulation model is in @ac
ATSV provides a suite of controls to help designeasigate and explore the trade space, includiegalisteering
commands to (1) randomly sample the design spagese@rch near a point of interest, (3) searchdirection of
preference, or (4) search for the Pareto frontsufamary of each type of sampler follows; we refer teader to
Ref.® for more details.

2
American Institute of Aeronautics and Astronautics



Horsepower (hp) vs. MSRP B4ES 604 83 738 2667 843 818

Horsepower (hp)

Parallel Coordinate Plots %

its new posttion by selecting another variable label 71 R il 504

2lu 9|

iciency {rgd)

Horsepower (hp) vs. Engine Size (L)
&0

9 60 f1 83
leﬂ'l-lhs) i Curlﬂeiﬂmﬂhﬁi

1D/2D Histogram
Plots

337 5|

T
NI R
20428) "= Eop

Horsepower (hp}

71

1 2826 466 6475 £3

Binned Plots

Specialized Glyph
Plots

Horsepolver (hyf ™

Figure 1. Multi-dimensional data visualization capéilities in ATSV.

1) Design space samplesse used to populate the trade space and arafiypievoked if there is no initial data
available. The user can sample the design spaceaita using slider bar controls for each input dirsion or
randomly. When sampling randomly, the user spexifhe number of samples to be generated and thelbmf
the multi-dimensional hypercube ¥f Monte Carlo sampling then randomly samples tipeiis — drawing from a
uniform, normal, or triangular distribution — ankkeeutes the simulation model, storing the corredpmnoutput in
the database. The bounds of the design variablebe reduced at any point to bias the samplegivea region if
desired. An example is shown in Figure 2 whereé¢iggon of interest is for the two design varial{lésB) <0.5.
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Figure 2. Example of design space sampler.
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2) Point samplersalso referred to aattractors are used to generate new sample points nearraspseified
location in the trade space. The attractor is ifipddn the ATSV interface with a graphical ic#® that identifies
ann-dimensional point in the trade space, and then seawple points are generated near the attractoras olose
as they can get to it. Unbeknownst to the user attractor generates new points using the Dift@kBvolution
(DE) algorithm? which assess the fitness of each new sample lasélde normalized Euclidean distance to the
attractor. As the population evolves in DE, thegkes get closer and closer to the attractor. »an®le is shown
in Figure 3 where the user specifies an attraadilltin a “gap” in the trade space (see Figur@)B( The new
samples cluster tightly around Attractor_1 as sedfigure 3(b).
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Figure 3. Example of point sampler using an attraar.

3) Preference samplerallow users to populate the trade space in redioatperform well with respect to a
user-defined preference function. New sample pan¢ generated again by using the DE algorithintheufitness
of each sample is now defined by the user’s pratardnstead of the Euclidean distance. An exarplthe
preference sampler is shown in Figure 4. Using W8Srushing and preference controls, the userifpsca
desire to minimize Obj1l and maximize Obj3 with dquaighting (see Figure 4(a)). We currently empéolinear
weighted sum of the user’s stated preferencesptimetr preference functions could be implementeti gaseasily.
Figure 4(b) shows the initial samples shaded basquteference, and Figure 4(c) shows the new samnpleere the
concentration of points increases in the directibpreference, namely, the upper left hand corh¢neplot.
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4) Pareto samplerare used to bias the sampling of new designsarcheof the Pareto front once the user has
defined his/her preferences on the objectives. Héieto sampler uses the Pareto Differential Eiaiudlgorithm
developed by Madava,which differs from DE in terms of how selectionperformed. In particular, a non-
dominated sorting procedure is implemented at tite @ a generation to select the bE# individuals from the
pool of parents and children — DE only competesdoéi against their own parent vect8tsAn example of this
sampler is shown in Figure 5. Using the same pzafee as before (i.e., minimize Obj1l and maximitg3Qvith
equal weighting), Figure 5(a) shows the Paretotpamthe initial samples while Figure 5(b) shoWs Pareto front
after executing 7 generations of the DE with a paton size of 25 points. The points are also shat indicate
the region of high (red) and low (blue) prefereating the Pareto front.
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Figure 5. Example of Pareto sampler.

In their current implementation, none of these aissteering commands explicitly considers constsawhen
exploring the trade space unless they are hardecimdie the underlying simulation model used forlgsia. This is
because in our approach to trade space exploratiergdvocate exploring the entire trade space fesisible and
infeasible, and then “brushing out” (i.e., filtegininfeasible designs using the Brush/Preferencoérats in ATSV?®
This approach works well since many of the actoaistraint limits are imposed subjectively by theigeers based
on their experience; however, in tightly couplechighly constrained systems, there may only bereomaband of
feasible designs, and exploring the entire tradespnay yield many solutions that are truly infekesi Therefore,
having the capability to enforce constraints durihg exploration process may increase its effigieaod
effectiveness, i.e., allow designers to find betlesigns with fewer function evaluations. Consedjye the
objective in this study is to investigate the impafcconstraint handling on the trade space exfitorgrocess when
using these visual steering commands. The winggdegroblem used for this study is described nefthe
constraint handling methods and experimental setrapescribed in Section IV along with the results

lll.  Wing Design Problem

The wing design problem was developed by SimpsahMeckesheiméf and involves sizing the wing of an
aircraft to minimize its cost subject to constrainin range, buffet altitude, and takeoff field l#ng Six design
variables (inputs) are used to size the wing:

1) Semi-span, x

2)  Aspect ratio, x f¢—] ot

3) Sweep angle of quarter chord, x TsweepN L~ T\ T T T e

4)  Taper ratio, x angle Span?

5)  Sparbox root chord, YCoffsx m g Aspectratio= bR

6) Fan diameter, -+ g

The aspect ratio, taper ratio, and semi-span affect g  Tipchord
overall wing area and geometry as shown in Figure| 6 Kev: Taper 1l =2 oot chord
while the sweep angle defines the leading edge pwée Spar o
the wing at the quarter chord. The sparbox roatrah "7 Nacelle  chord

YCoff, defines the width of the sparbox at the wing Figure 6. Definition of wing design variables.
centerline as shown in the figure. Finally, then fa
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diameter is used to scale the diameter of the ag®lunted underneath the wing. All design vagaladre scaled to
vary between 0 and 1 based on their lower and uppands, respectively.

Analysis for the wing design problem is achievethgsecond-order response surface models thaeriiatsix
design variables to the four performance variafiesponses) of interest, namely, Cost, Range, BAfféaude, and
Takeoff Field Length (TOFL} Sample data to construct these response sunfeees obtained from 243-point
orthogonal array, of which only 200 points providedsible designs. The response surface modelsoastructed
using ordinary least squares regression in the®J86fware, and with the exception of Buffet Altiridthey are full
second-order models that include first-order, sdemnmter, and two-factor interaction terms for dak slesign
variables. The response surface model for Buffétulle does not include Fan Diameteg, gince this variable
does not have a significant effect; hence, thipaese surface model is a full second-order modedrndy the
remaining five design variables. The resultingpmese surface equations for Cost, Range, TOFL, Burftet
Altitude are included in the Appendix. We notetttieese responses have been normalized to rangedied and 1
based on the minimum and maximum observed valaspectively.

The original optimization problem includes only iagde objective, Cost, which is to be minimized,ttwi
constraints on the remaining performance variafflaa/e modified the optimization problem for thisdyuo make
it multi-objective by minimizing Cost as well as ximizing Range as follows:

Minimize: Cost (1)
Maximize: Range
Subject to: Range >0.589

Buffet altitude >0.603

TOFL <0.377

The wing design problem is especially well suited this study. Preliminary experiments with expeasers
found that the method for constraint display sigaifitly impacted a user’'s search process — thaesdw fewer
constraints in the graphical display felt that tiheyl greater freedom to explore the trade spaceléinthtely found
better solutions given the tightly constrained natof the problem? The next section describes the experimental
set-up for this study, including the different ctvast handling methods that are compared, alonly thie results.

IV. Experimental Study

The objective in this study is to investigate thgpact of constraint handling on the trade spacdoexiion
process. This is done within the context of thegndesign problem and ATSV; however, the procedanesresults
are applicable to problems of a similar nature amgltrade space exploration process, regardlebe aoftware.

A. Experimental Set-Up

For this study, we evaluate three methods for hagdionstraints when using the visual steering camus
within ATSV: (1) no constraint handling, (2) mangalnstraint handling, and (3) automatic constraartdling. For
the no constraint handling case, the user igndreptedefined constraints specified for the wingigle problem,
simulating the situation in which the ordypriori knowledge about the problem is the desire to nizenCost and
maximize Range. Constraints are only applied eetid of the trade space exploration process ier dodselect the
best designs that satisfy Eq. (1). In the manaaktraint handling case, the user treats the @nttras objectives
when exploring the design space by specifying timas of preference that will ensure the consteare satisfied.
In this case, the user specifies not only to minanCost and maximize Range when exploring the tspadee but
also to maximize Buffet Altitude and minimize Tak#-Field Length. By maximizing Buffet Altitude (& Range)
and minimizing Take-off Field Length, the explooatiprocess should gravitate toward regions in théet space
that will be feasible after the constraint limite amposed (via the brush controls in ATSV).

In the automated constraint handling case, the specifies preferences and constraints prior tddmpnting
any of the visual steering commands such that ¢mstcaints are explicitly (i.e., automatically) lided during the
exploration process. This is achieved by integgathe constraint domination work of Deb et?dinto the DE and
Pareto DE algorithms used in ATSV. In particutag domination of two solutionsandj is modified to be:

A solutioni constraint-dominates solutigiif any of the following conditions are true:

1) iis feasible andlis infeasiblei constraint-dominates

2) iandj are feasible: ifPareto dominatgs theni constraint-dominates

3) i andj are infeasible: if dominateg in the constraint-violation space, thietonstraint-dominatgs
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Any ties for dominance are broken by the crowdiixeisity metric implemented by Deb et?land used by
Madavarf® Constraint limits are obtained directly from thser-specified settings in the brush controls irSXT
(see Figure 4(a) for an example). Constraint damie is implemented within all three DE-based sampt point,
preference, and Pareto samplers — in the autoncatestraint handling case with the goal of increggive number
of feasible points obtained when using visual stgecommands in ATSV.

To compare the performance of these three constiaimdling methods, we implement four sampler griak
each constraint handling method based on the videating commands available in ATSV:

1) Basic (design) sampler — provides a “baseline’cfamparison by randomly searching the design space.

2) Point (attractor) sampler — placed at various locatwithin the trade space to generate new dgsignts.

3) Preference sampler — used to drive the explorgtioness in the direction of preference.

4) Pareto sampler — used to generate points alongateto front.

Each sampler trial is allocated roughly 10,000 fiom evaluations, i.e., the user is limited to gatieg 10,000

points with a given sampler. The 10,000 point finvas used so that enough points were generatemable

comparisons between the sets of sampler trialsa@ih three constraint handling methods, yet didatiow for an

exhaustive search in which all of the resultinge®afronts would be found. Each sampler trial paormed three
times (i.e., each trial had three versions denweled/2, v3) to ensure that the results obtainethftbe sampler were
reliable and not due to the inherent randomne#issiDE algorithm.

The implementation details for each sampler trial summarized in Tables A.1 - A.3, respectively,tfee no
constraint handling, manual constraint handlingl antomated constraint handling methods. Figuag Stfows the
Brush/Preference controls for the wing design probprior to any user-defined settings. The sedtfiog the Pareto
and preference sampler trials are shown in Fig{og for the no constraint handling case. The Bfifestference
controls for the preference and Pareto samplerhéomanual constraint handling case are showiguwr® 7(c). At
the end of each trial the settings shown in Figi{cd were applied so that only feasible Pareto tgoirere obtained.
For the automatic constraint handling case, thes®Rreference controls were also set as shownguaréi7(d).
Since the basic sampler randomly searches the rdsgigce, it is not affected by the Brush/Preferetmrols
regardless of how constraints are handled; the sisgly provides the settings in Figure 7(d) toaittthe feasible
Pareto points after 10,000 points are generatdlewlise the point (attractor) sampler is specifiicectly in the
trade space and is only impacted by the Brush/Rnefe controls in the automated constraint handiage when
the underlying DE is modified to include constrademinance during the exploration process.

& &
B L =¢ & =288 g ®m n =S¢ 2 @f8 & g
Add Controls for & Variable | TakeOffLength v Add Controls for a Yariable | TakeOffLength v

Yariahle Brush Controls Preference Controls Yariable Brush Controls Prefarence Controls
@ Cost D1 P— 074 Miimize ; 0 Maximize M cost R — e | inrize Ut 100 Measinize
M Rangs 015 Pt 086 (] |Wimize ; 0 haxinizs M Range R - vinirize U |00 ssamize
[l Buffetaltinds D16 P, 0:94 (2] vininize J 0 Maxmize [ Buffetaltinde 016 [— 034 [2] |Minirize ; 0 Maximize
@ TakeOfLength 0 B . 085 Vinirize ; 0 esiize M TakeOfLergth 00 Bt 0685 () |Wrize ; 0 haxinizs

(a) No constraints specified (b) Settings for prefice and Pareto samplers
without constraint handling

& &
B0 =Se & @88 L & B 0O (= & 388 kL g
s Contrals for a variable | TakeOffLength v i Contrals for & variabls | TakeOffLength v

Variahle Brush Controls Preference Controls Varizble Brush Controls Prefarence Contrals
@ Cost [ERE < — T vinrize U} 100 Masinize M cost (IR A — vinimize ) 100 Meximize
[l Range EECH) - — Y] T U [ 100 prasinize M Range 0.59 (% el 085 [a]) inize U [ 100 exirize
W puffetaltine 16 Bt 094 (] Wrize U {100 praxinizs M@ euffetattids 06 % oD% o Vinirize ; 0 exiize
M TakeOfLength 00 B 085 vinimize A} 100 axinizs M TacOfengh | 0.09 Pl "% 032 Vinirize ; 0 exiize

(c) Settings for manual constraint handling trials (d) Settings for automatic constraint handlingltriand

to obtain final feasible Pareto points in allattrials

Figure 7. Brush/Preference controls for all trials.

We compare the 36 sets of results (= 3 constraintling methods 4 trialsx 3 versions of each trial) both
graphically and quantitatively. The graphical gs# entails overlaying the feasible Pareto frdrim each version
of each trial in different colors for each congttahandling method to visualize the differencegha resulting
Pareto fronts. The quantitative analysis involeesputing the following metrics for each set ofules
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1) Percentage of feasible points in the final set
2) Number of Pareto points in the final set (Notexnp®must be feasible in order to be consideredi®are
3) Percentage of the non-dominated points in the coetbPareto front (Note: the combined Pareto frent i
obtained by combining the Pareto points from tHatgm sets from a set of four trials and then reing
dominated points).
The first metric assesses the efficiency of thdaagion process: a small percentage of feasibiletpindicates that
many function evaluations were “wasted” generatirfigasible designs while a high percentage of Eagpoints
indicates a more efficient use of function evalmasi The second metric measures the number ofpbéds that
were found, i.e., feasible non-dominated points fadisfy Eqg. (1). This metric provides a meanssdessing the
relative effectiveness of the exploration processafgiven trial. Finally, the third metric comparthe effectiveness
of a given constraint handling method across alf fiials by indicating which approach yielded tmest non-
dominated points after 10,000 function evaluations.

B. Experimental Results

The resulting feasible Pareto fronts for the nost@int handling, manual constraint handling, antbmatic
constraint handling methods are shown graphicallfFigure 8, Figure 9, and Figure 10, respectiveéfhe plots
within each figure are sorted by version (i.e., v2, v3) of the sampler trial and color-coded t@whhow the
resulting Pareto fronts compare to one anotherallliof these plots, the light blue points are thasible Pareto
points obtained from the basic sampler, the daule Iploints are the feasible Pareto points obtained the point
(attractor) sampler, the yellow points are the ifdasPareto points obtained from the Pareto sampled the red
points are the feasible Pareto points obtained ftwerpreference sampler. The combined Pareto fsosttown on
the right-hand side of each figure, where the nomidated solutions are denoted by ‘+' and the saober coding
is used to indicate from which sampler trial thewtmminated point were obtained.

The differences between the three constraint hagdtiethods are readily apparent based on visuapanson
of the plots in each of these figures. First, bynparing left-hand plots (a), (c), and (e) in eéighre, we note
similarities among the resulting Pareto fronts freach version (v1, v2, v3) of each trial that uaedifferent
sampler. This indicates that the results obtaaredreliable and achieved as a result of the mesthedd, not due to
the inherent randomness in the underlying DE allgorior its creation of initial seeds.

Next, we note a strong correlation between condttendling method and trial in terms of which sémjs the
most effective and most ineffective. In Figurett® basic sampler trials yield the most Paretotpam all three
versions (see Figure 8(a), Figure 8(c), and Fi@{eg) of the no constraint handling case, and ttatribute the
majority of the Pareto points to the combined Rafints as seen in Figure 8(b), Figure 8(d), aigdiie 8(f). The
attractor performs the worst in the no constraemdiing case, but it is the most effective sampiethe manual
constraint handling cases shown in Figure 9. Ttracor sampler contributes the majority of thed®a points to
the combined Pareto fronts shown in Figure 9(bjufé 9(d), and Figure 9(f) while the preference [gemyields
the worst points in the manual constraint handtiage. Meanwhile, in the automatic constraint hiagdtases in
Figure 10, the preference and Pareto samplersharenbst effective. As seen in Figure 10(b), Figl®éd), and
Figure 10(f), the preference sampler tends to dmritr the points in the low Cost region to the corad Pareto
front while the Pareto sampler favors designs tigh lRange region. Finally, we note that the basmpler
performs the worst in the automatic constraint fiagccase, yielding points that are dominated barlyeall of the
other samplers.

The quantitative assessment of each trial's pedioa confirms these qualitative findings. Tabkifnmarizes
the results for each version of each sampler fmiathe three constraint handling methods usingaflieeementioned
metrics, namely, percentage of feasible points, bemof feasible Pareto points, and percentage nfduminated
points in the combined Pareto front. In the nost@int handling case, the basic sampler conslgtgiglds the
highest percentage of feasible points, finds thetri@reto points, and contributes 61-89% of thetpdi70% on
average) to the combined Pareto front. The preéeresampler contributes the next highest percentdgen-
dominated points, while the attractor and Paretopsers offer less than 2% of the non-dominated tgoin the
combined front; however, on average 1% or lesé®fints from the preference, Pareto, and attraetmplers are
feasible — conversely, 99% of the function evahuadiused in these trials yield infeasible pointsicl is a highly
inefficient way of exploring the trade space. le imanual constraint case, the attractor trialpeyfdrm the other
samplers, returning an average of nearly 30% feapibints and contributing more than 87% of the-dominated
points to the combined Pareto front, on averagke Fareto sampler does slightly better than imntheonstraint
handling case, and the basic sampler trials yieldparable results to the Pareto sampler. The nerefe sampler
performs the worst by far, offering zero non-dorébpoints to the combined Pareto front in all ¢hwersions.
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Table 1. Performance of each version of each sampleial for each constraint handling method.

No Constraint Handling Manual Constraint Handling Automatic Constraint Handling
Metric | Basic | Attractor | Pareto | Preference | Basic | Attractor | Pareto | Preference | Basic | Attractor | Pareto | Preference
vl
% 6.22 | o067 0.27 1.17 577 | 28.42 7.71 0.57 559 | 996 | 37.46 6.20
Feasible
#Pareto | g 3 5 15 23 47 17 5 17 31 44 56
Points
%
ngg?fd 61.90 | 0.00 0.00 38.10 213 | 95.74 2.13 0.00 000 | 253 | 27.85 69.62
Front
Combined
Front # 21 47 79
Points
v2
% 6.24 | o0.68 0.15 1.33 597 | 28.16 6.16 1.63 631 | 935 | 39.97 4.34
Feasible
#Pareto | 5 4 5 8 16 44 16 4 19 27 63 20
Points
%
C(;r;rtz?oed 6111 | 5.56 0.00 3333 [1333| 7333 | 1333 0.00 0.00 | 656 | 60.66 32.79
Front
Combined
Front # 18 30 61
Points
v3
0,
% 563 | 067 0.14 0.42 593 | 33.38 7.52 0.80 6.27 | 1003 | 43.02 13.97
Feasible
#Pareto | 5 3 7 4 16 68 16 3 13 29 65 205
Points
%
ngg?fd 88.89 | 0.00 5.56 5.56 147 | 9265 | 588 0.00 041 | 122 | 1469 83.67
Front
Combined
Front # 18 68 245
Points
Average of v1, v2, v3
0,
% 6.03 | 067 0.19 0.97 589 | 29.99 7.13 1 6.06 | 978 | 40.15 8.17
Feasible
#Pareto | g 3 6 9 18 53 16 4 16 29 57 94
Points
%
ngg?fd 7063 | 1.85 1.85 25.66 564 | 87.24 7.11 0 014 | 344 34.4 62.03
Front
Combined
Front # 19 48 128
Points?

4 The average # of Pareto points and # points in the combined Pareto front are rounded to the nearest integer value.

In the automatic constraint handling case, the tBasampler tends to find the highest percentagieadible
points (40% on average). It contributes nearly 6% e non-dominated points to the combined Pdretat in one
of the trials (v2), but the preference sampler Gbates the most non-dominated points to the coaiPareto front
on average (62%). Surprisingly, the preferencepdamtends to have a rather low percentage oftiémpioints (8%
on average) while contributing the most non-don@datoints to the combined Pareto front in two duthe three
trials (v1 and v3). The attractor trials yield radeasible points on average (10%) but contribege than 4% of the
non-dominated points to the combined Pareto frofite basic sampler performs the worst in the automa
constraint handling case as noted earlier (seer&iQ). Finally, we note that the automatic caaetrhandling
method leads to the highest number of non-dominadémts in the combined Pareto front on averagesactrials.
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To understand why the attractor, preference, anét®a
samplers perform so poorly in the no constraintdtiag case,
consider Figure 11, which shows the Pareto fromtsafset of
points (not from an actual trial). The infeasilgeints are
shown in gray, and the feasible points are showedn- these
red points are the points that remain after appglythe
Brush/Preference control settings shown in Figuld).7
Before these controls are set to reveal the feaségion, the
user would be inclined to place attractors alorgittieasible
region’s Pareto front since it dominates what is tlasultant
feasible region. Due to the user's bias to expliorehis
infeasible region, the only points generated in thasible
region come from random points generated by the |
algorithm; hence, the low percentage of feasibletgo The
same logic applies to the Pareto and preferenceplsasn
which would bias their sampling along the infeasiBlareto
front when no constraint information is present,iclihalso
explains the low percentage of feasible pointsic&the basic
sampler is sampling uniformly across the entireddrapace, it
outperforms the other samplers by chance.

In the manual constraint handling case, the bamioper is unable to compete — it generates abeusdime
percentage of feasible points and the same nunilitarreto points as before, but the attractors erddlis case due
to their placement in the trade space, i.e., tlayle placed to minimize Cost and maximize Rangtewleing just
beyond the constraint limits for Range, TOFL, andf& Altitude. The Pareto and preference samplensthe
other hand, suffer from the manner in which thest@ints were handled manually, i.e., they “ovetstie desired
region when minimizing TOFL and maximizing Buffetitfude were added as separate objectives (instéad
specifying them as constraints) to bias the samgpbmards feasible designs. Figure 12(a) showsdhesponding
Pareto front for the Brush/Preference control sg#tifor the manual constraint handling case (sger€&i7(c)). The
Pareto and preference samplers tried to generatespalong this new four-dimensional front evenugb the
desired Pareto front is located on the edge o$th&ll colored region in Figure 12(b). As a resulny evaluations
were wasted exploring the infeasible space asatelicby the multitude of gray points in Figure 92(fhis figure
also provides an accurate representation of tleedithe feasible region compared to the entirgetispace.

Range vs. Cost

Range

Y
0083 B25 863

Cost

Figure 11. Infeasible (gray) and feasible (red)
Pareto fronts (+ denotes Pareto points).
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(a) Pareto front of entire trade space (b) Pdrett of feasible space (gray points are infeagbile
Figure 12. Representation of Pareto front for manubconstraint handling trials.
In the automatic constraint handling case, thetBared preference samplers appear to have perfonaidor

different reasons. The Pareto sampler generatedich higher percentage of feasible points oncedk tthe
constraints into account — as the underlying DEutadpn evolved, it found more and more feasiblenfbased on
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the constraint-dominance concept that we implententEhe same goes for the preference sampler; rerwéwe

preference sampler concentrated its search in weetion, namely, the direction of preference, velaerthe Pareto
sampler tried to find the entire Pareto front. ths search populations evolved, the preference Isapopperformed

the Pareto sampler since it was essentially seagaiong a line instead of along a two-dimensidrwit, leading to

a higher percentage of non-dominated points, omagee for the preference sampler in the automatitsitaint

handling case. This was seen earlier in Figurewtich shows how the points from the preferencemamare

confined to a small area along the front. Meansytihe basic sampler continued to randomly explloeedesign

space and performed about the same as beforeyimgrits consistency in how it was intended to eper The

attractor samplers performed better than in theamstraint handling case, but they were not acgffein this case
as they were in the manual constraint handling sasze the user specified locations only in thedea@ost trade
space (see Table A.3) not the entire four-dimeraitade space (see Table A.2).

V. Closing Remarks and Future Work

Trade space exploration is a powerful alternatov@ptimization-based approaches for formulatingustihg,
and ultimately solving multi-objective design prefils. It provides a visual and more intuitive mefangiesigners
to explore the trade space by integrating multiehisional data visualization and visual steering mamds. As
part of our ongoing investigations into the trag@ce exploration process, we examine the impacioostraint
handling on the exploration process using a wingjgiteexample in this paper. In particular, we eixeut three
constraint handling methods — no constraint haggdimanual constraint handling, and automatic cairgthandling
— and evaluated their impact on the efficiency effidctiveness of the four samplers available inAR&V, namely,
the basic, point (attractor), preference, and Basemplers. Graphical and quantitative analysisrdened that the
performance of each sampler trial was highly caissl with the constraint handling method: the basimpler
performed best for the no constraint handling cése,point (attractor) samplers performed besthm thanual
constraint handling case, and the preference aretd®samplers performed best in the automatic cansthandling
case with the Pareto sampler being more efficibat€éd on the percentage of feasible points) angréference
sampler being more effective (based on the pergerddnon-dominated points in the combined Panetat}.

While initially surprising, the results are coneist with the user'sa priori knowledge about the constraints,
which is reflected in how constraints are handledeach method. The implications of these findiaga be
summarized as follows. If users are uncertain aidmiconstraint limits, then the basic sampleuthde used to
randomly search the trade space — this is equivédethe no constraint handling case wherein th&chsampler
offers consistent performance in terms of efficieand effectiveness. Meanwhile, if constraint tsmare known
and the user wants to explore directly along themendaries to explore specific tradeoffs, theraattrs should be
used since they can be placed at specific locafiotise trade space. This is equivalent to theuahnonstraint
handling case, wherein users may have sampsgori knowledge about the constraints, but they wanfléhebility
to “push the boundaries” when looking for the b#ssigns. Finally, if constraint limits are fairtgrtain or if the
problem is highly constrained with a small regidrieasibility, then the Pareto and preference sanspdre the best
choice. This is equivalent to the automatic caistrhandling case, and users should select tHerpreee sampler
for maximum effectiveness when their preferences, (important weighting for each objective) arewn a priori
and with a high degree of certainty. If the impore weights are not know with a high degree abagy, then the
Pareto sampler should be used due to maximizaegftig while also finding good designs.

This study is part of ongoing work to provide ermgat evidence and quantify the benefits of puttitegigners
back “in-the-loop” during the design optimizationopess. Immediate extensions to this particuladysinclude
comparing the resulting Pareto fronts in each easEnst a “reference set” to determine how manyhefnon-
dominated points are in the actual Pareto frontwsidge-dominancé® or s-Paret® filtering techniques to obtain a
better representation of the number of differenieRapoints found in each case. Finally, simikst$ should be
conducted on problems of varying size and complex#nging from unconstrained to highly constrainedature,
to ensure that the results are indeed applicatdewtmle range of design problems.

Appendix
The following equations are the second-order respsnrface models for the wing design probfém.

Cost = 0.2854 - 0.005%¢ 0.3109*% - 0.0122*% - 0.2095* - 0.4836™% + 0.4431*x + 0.1037*%*X ¢ - 0.0592*%*X 5 (A1)
- 0.0204%%*x 3 + 0.1057%%*X 4 + 0.2494*%*X , + 0.0218*%*x 1 + 0.0581%%*x 5 + 0.0025*%*x 3 + 0.0034*%*X 4
+ 0.0502*%*X 5 - 0.0326*%*x 1 + 0.1254%%*X 3 - 0.1362*%*X 4 + 0.1664*%*X, - 0.4223*%*x 1 + 0.1039*%*X 4
- 0.0155%%*x, - 0.0735%%*x 1 - 0.1281*%*X, + 0.2183*%*X; - 0.2109*%*X ¢
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Range = 0.3576 - 0.0329% 0.1978*x + 0.0149%% - 0.0389*%, - 0.4652*% + 0.4453*% + 0.0149%%*Xs - 0.051*%*x5 (A.2)

+0.0075%%*X 3 - 0.0229%%*x , + 0.0987*%*X, - 0.0188"%*X; - 0.0524**X 5 - 0.0272*%*X 3 + 0.0281*%*X 4
- 0.0147%%* , + 0.0083%¢*x 1 + 0.1018*6*X 3 + 0.0563*6*X 4 - 0.0349*6*x , + 0.064*%*x 1 + 0.0073*%*X 4
+0.0176%%*x, + 0.0341%%*x, + 0.1063%*X, - 0.0374%%*x 1 + 0.0143%%*x;

TOFL = 0.2884 - 0.2896%+ 0.3376%% + 0.0088%% - 0.0478%4 - 0.1448*% + 0.1239*x + 0.0714*%*X - 0.029%%*X 5

(A.3)

+ 0.0148*%*x 3 + 0.0068%%*X 4 + 0.2251*%*X, + 0.1654*%*X 1 - 0.12*%*X 5 - 0.0475*%*X 3 + 0.0426*%*X 4
- 0.0486™%*x, - 0.1058*%*x; + 0.1712*%*x3 + 0.0071*%*X 4 - 0.0887*%*Xx 5 + 0.0759*%*x 1 + 0.0028*%*X 4
- 0.0056%%*x, + 0.064*%*x 1 + 0.0063*%*X » + 0.0456*%*x 1 - 0.2902*%*X 1

Buffet altitude = 0.617 - 0.1221#x 0.0485*% + 0.0141%% - 0.4507*% + 0.6968%% + 0.0248*¢*X 5 + 0.0277*%*X 3

(A.4)

+ 0.011*%*X4 - 0.0873*%*X 5 - 0.295*%*X 1 - 0.061*%*X 3 - 0.0789*%*x , + 0.0546*%*X, - 0.1674*%*X
- 0.0008%*x 4 + 0.0422*%*X 5 - 0.0371*%*x 1 + 0.017*%*X, - 0.0507*¢*x ; + 0.2845*%*X ;

The following tables summarize the implementatietads for each sampler trial for each constraemdiing

method.

Table A.1.

Description of sampler trials with no castraint handling.

Basic (Total Points: 10,000)

Pareto (Total Points: 10,080)

- Basic sampler: 10,000 runs
- Brush and preference controls (to obtain
feasible and Pareto) data:

- Minimize (-100) Cost

- Maximize (100) Range = 0.589

- BuffetAltitude = 0.603

- TOFL =0.377

- Generation size set at 60
- Brush and preference controls:
- Maximize (100) Range
- Minimize (-100) Cost
- Pareto sampler: 10,000 runs
- Brush and preference controls (to obtain feasible and Pareto) data:
- Minimize (-100) Cost
- Maximize (100) Range = 0.589
- BuffetAltitude = 0.603
- TOFL =0.377

Preference (Total Points: 10,080)

Attractor (Total Points: 10,203)

- Generation size set at 60
- Brush and preference controls:

- Maximize (100) Range

- Minimize (-100) Cost
- Preference sampler: Looped until 10,000 or
more runs are reached
- Brush and preference controls (to obtain
feasible and Pareto) data:

- Minimize (-100) Cost

- Maximize (100) Range = 0.589

- BuffetAltitude = 0.603

- TOFL =£0.377

- Basic Sampler: 25 runs

- Generation size changed to 60

- Point Attractor: # Runs set to 600
- [Cost = 0.165, Range = 0.875]
- [Cost = 0.087, Range = 0.643]
- [Cost =0.100, Range = 0.435]
- [Cost =0.165, Range = 0.524]
- [Cost = 0.326, Range = 0.919]
- [Cost =0.228, Range = 0.732]
- [Cost =0.029, Range = 0.242]
- [Cost = 0.040, Range = 0.362]
- [Cost =0.263, Range = 0.943]
- [Cost = 0.383, Range = 0.995]
- [Cost =0.170, Range = 0.654]
- [Cost =0.047, Range = 0.446]
- [Cost =0.162, Range = 0.824]
- [Cost =0.188, Range = 0.747]
- [Cost =0.213, Range = 0.803]
- [Cost =0.143, Range = 0.530]
- [Cost = 0.014, Range = 0.294]

- Brush and preference controls (to obtain feasible and Pareto) data:
- Minimize (-100) Cost
- Maximize (100) Range = 0.589
- BuffetAltitude = 0.603
- TOFL<0.377
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Table A.2.

Description of manual constraint handlig sampler trials.

Basic (Total Points: 10,000)

Pareto (Total Points: 10,080)

- Basic sampler: 10,000 runs
- Brush and preference controls (to obtain
feasible and Pareto) data:

- Minimize (-100) Cost

- Maximize (100) Range = 0.589

- BuffetAltitude = 0.603

- TOFL <0.377

- Generation size changed to 60
- Brush and preference controls:

Maximize Range
Minimize Cost
Minimize TOFL
Maximize BuffetAltitude

- Pareto sampler: 10,000 runs
- Brush and preference controls (to obtain feasible and Pareto) data:

Minimize (-100) Cost
Maximize (100) Range = 0.589
BuffetAltitude = 0.603

TOFL <£0.377

Preference (Total Points: 10,446)

Attractor (Total Points: 10,335)

- Generation size changed to 60
- Brush and preference controls:

- Maximize (100) Range

- Minimize (-100) Cost

- Minimize (-100) TOFL

- Maximize (100) BuffetAltitude
- Preference sampler: Looped until 10,000 or
more runs are reached
- Brush and preference controls (to obtain
feasible and Pareto) data:

- Minimize (-100) Cost

- Maximize (100) Range = 0.589

- BuffetAltitude = 0.603

- TOFL <0.377

- Basic Sampler: 25 runs
- Generation size changed to 60
- Point Attractor: # Runs set to 600

[Cost = 0.469, Range = 0.607, TOFL = 0.352, BuffetAltitude = 0.797]
[Cost = 0.592, Range = 0.749, TOFL = 0.317, BuffetAltitude = 0.779]
[Cost = 0.481, Range = 0.725, TOFL = 0.351, BuffetAltitude = 0.720]
[Cost = 0.539, Range = 0.800, TOFL = 0.351, BuffetAltitude = 0.720]
[Cost = 0.373, Range = 0.665, TOFL = 0.351, BuffetAltitude = 0.720]
[Cost = 0.320, Range = 0.662, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.656, Range = 0.813, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.644, Range = 0.836, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.495, Range = 0.773, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.407, Range = 0.708, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.323, Range = 0.637, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.648, Range = 0.823, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.483, Range = 0.774, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.425, Range = 0.729, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost =0.672, Range = 0.847, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.598, Range = 0.823, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.635, Range = 0.844, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.358, Range = 0.690, TOFL = 0.370, BuffetAltitude = 0.720]
[Cost = 0.672, Range = 0.839, TOFL = 0.370, BuffetAltitude = 0.720]

- Brush and preference controls (to obtain feasible and Pareto) data:

Minimize (-100) Cost
Maximize (100) Range = 0.589
BuffetAltitude = 0.603

TOFL < 0.377
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Table A.3.

Description of automatic constraint hanéing sampler trials.

Basic (Total Points: 10,000)

Pareto (Total Points: 10,080)

- Basic sampler: 10,000 runs
- Brush and preference controls (to obtain
feasible and Pareto) data:

- Minimize (-100) Cost

- Maximize (100) Range = 0.589

- BuffetAltitude = 0.603

- TOFL £0.377

- Generation size changed to 60
- Brush and preference controls:
- Maximize (100) Range = 0.589
- Minimize (-100) Cost
- BuffetAltitude = 0.603
- TOFL < 0.377
- Pareto sampler: 10,000 runs

Preference (Total Points: 10,080)

Attractor (Total Points: 10,000)

- Generation size changed to 60
- Brush and preference controls:
- Maximize (100) Range = 0.589

- Basic Sampler: 25 runs
- Generation size changed to 60
- Brush and preference controls:

- Minimize (-100) Cost

- BuffetAltitude = 0.603

- TOFL <0.377
- Preference sampler: Looped until 10,000 or
more runs are reached

- Range = 0.589
- BuffetAltitude = 0.603
- TOFL=<0.377
- Point Attractor: # Runs set to 600
- [Cost = 0.204, Range = 0.569]
- [Cost = 0.442, Range = 0.721]
- [Cost = 0.345, Range = 0.527]
- [Cost = 0.488, Range = 0.700]
- [Cost = 0.357, Range = 0.629]
- [Cost = 0.492, Range = 0.713]
- [Cost = 0.425, Range = 0.664]
- [Cost = 0.510, Range = 0.757]
- [Cost = 0.591, Range = 0.798]
- [Cost = 0.349, Range = 0.675]
- [Cost = 0.409, Range = 0.715]
- [Cost = 0.564, Range = 0.809]
- [Cost = 0.500, Range = 0.796]
- [Cost = 0.600, Range = 0.800]
- [Cost = 0.363, Range = 0.658]
- [Cost = 0.455, Range = 0.761]
- [Cost = 0.396, Range = 0.709]
- Brush and preference controls (to obtain feasible and Pareto) data:
- Minimize (-100) Cost
- Maximize (100) Range = 0.589
- BuffetAltitude = 0.603
- TOFL £0.377
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