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A new process is described that assists engineers in making complex decisions during the
design process. The Interactive Design Selection Process (iDSP) allows designers to collect
design infor mation, compare candidate designs, build user preferences, and ultimately zero
in on the best designs. In contrast to traditional black-box optimization approaches, the
iDSP involves the designer in each and every step of the process. This involvement gives
designers more confidence in the results and allows them to find designs that satisfy all
stake-holders. A prototype of the iDSP was implemented by combining an advanced
visualization tool with a genetic optimizer using a commer cially available processintegration
environment. A Lunar exploration mission design problem was solved using the guided
sear ch technique augmented by design space visualization.

. Introduction

Engineering design projects start with many unknowns. In the case of complex systems, design parameters and
requirements may not at first be clearly defined. The design process typicaly involves many incremental learning
experiences. As more is understood about the system characteristics and requirements, design goas and
requirements often need to be modified or refined. Engineers have difficulties in applying formal optimization
techniques to these problems because optimization algorithms generally assume the existence of a well formulated
design problem. Another difficulty with formal optimization techniques is that engineers are often left with the
feeling that they do not have sufficient control over the direction of the design process. When an optimal design is
found, engineerstend to be reluctant to accept it because they do not understand how or why the optimizer found the
design.

The design by shopping paradigm proposed by Balling' presents the design process as a shopping experience. The
designer is like a shopper who visits adealer’s ot to buy a car. The shopper will have some initial idea about the car
he or she wants in terms of size, style, gas mileage, price, etc. Chances are that the shopper will reevaluate these
expectations and preferences once he or she takes a look at various models available. A truly multi-objective
decision making process is going on inside the shopper’s mind even though he or she may not perceive it. Such a
complex process works by examining car models as a whole and comparing them against other alternatives. When
applied to the design process, the shopping paradigm would present a list of good candidate designs to decision
makers, and allow them to iteratively refine their preferences before making the final selection.

Two research areas were suggested by Balling to support the design by shopping paradigm’. First, efficient methods
for abtaining rich Pareto sets are needed. Second, interactive graphical computer tools are needed to assist decision
makers in the shopping process. A genetic algorithm optimizer was suggested to support the first need. A multi-
objective genetic algorithm (MOGA) approach was used to find a Pareto set that can be presented to decision-
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makers who decide relative importance of the objectives’. Researchers at the Applied Research Laboratory (ARL) of
the Penn State University developed a design space visualization tool called the ATSV (ARL Trade Space
Visualizer)** that can support the second need. The ATSV uses multi-dimensional visualization techniques to
present alarge number of design alternatives. The ATSV allows users to apply constraints to the design space using
a screening process called brushing and visualize the results of a user’s preference structure using preference
shading and Pareto frontier display.

This work extends the previous research to realize the design by shopping paradigm. The objective of this work is
two-fold. The first objective is to define a step-by-step process that engineers can follow to better understand the
design space, build user preferences, and make design selections according to the design by shopping paradigm. It is
important to give users the ability to control the design selection process. The second objective is to implement
software tools to perform the design selection process in an integrated environment. Each step of the process will
require statistical analysis, optimization, or the visual examination of design aternatives. The environment must
provide necessary capabilities to allow usersto maintain control over the design selection process.

Our proposed design process, the Interactive Design Selection Process (iDSP) is discussed in the following sections.
The design selection process is divided into six steps and required tasks for each step are defined. Next, the
integration of ATSV with Model Center® process integration environment is discussed. A discussion of a prototype
implementation of iDSP utilizing the User Guided Search (UGS) approach follows. The UGS, in contrast to the
black box optimization approach, allows users to interactively influence the automated search of the optimization
algorithm. Finally, an example problem of space exploration mission design is discussed followed by concluding
remarks.

I1. Interactive Design Selection Process

The Interactive Design Selection Process (iDSP) defined here assumes that engineering design activities are a series
of learning experiences and decision making steps. Design space visualization techniques help define design
objectives and preferences by presenting candidate designs for comparison. In the iDSP framework, design
engineers can exercise their judgment throughout the design process, including the selection of design parameters,
the choice of preferences, and the selection of candidate designs. The well defined process gives guidance to users
and helps them avoid spending resources on design candidates that would not produce customer satisfaction. Figure
1 shows a flowchart of iDSP. A description of each step follows below.

Start

—+ Select design parameters
|

‘ Generate initial exploratory designs
l

‘ Screen design parameters ‘

‘ Generate Pareto set
|

‘ Select preferred designs

‘ Refine preferred designs ‘

Final designs

Figure 1: Interactive Design Selection Process.
Step 1: Select Design Parameters

Design engineers should first compile a list of parameters that may be important to the design problem. This should
be an inclusive list, since the effects of inputs on outputs may be unknown or unintuitive. It is not necessary to make
formal distinctions between design variables, objectives, and constraints at this step. It is enough to decide whether
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the parameter is an input or an output, and decide on typical values for the input parameters, so that bounds are
defined for continuous or discrete (integer) variables and a set of possible values for enumerated type (e.g.,
categorical variables such as material selection).

Step 2: Generate Initial Exploratory Designs

Step 2 is an initial scan of the design space defined in step 1. Various sampling techniques can be used to
automatically generate initial candidate designs. For example, a design of experiments (DOE) or a randomly
generated sample can be used. The sample size should be large enough to perform statistical analysis of input and
output relationship of the system. The computational analysis model will be run for each candidate design and the
values of the input and output variables will be recorded. By examining the data set, designers may discover
anomalies such as failed runs or nonsensical behavior of the model. Multi-dimensional design visualization is very
useful to identify outliers in the data. Such problems should be corrected whenever possible. However, the iDSP
process is not hindered from failed runs because it considers individual designs as a whole and compares them each
other in apossibly large candidate pool. Failed runs can be penalized or simply excluded from consideration.

Step 3: Screen Design Parameters

The sample data from the previous step is used to find important parameters and their roles. Firgt, statistical analyses
such as ANOVA (analysis of variance) can be used to quantify the effects of the inputs on the outputs. A graphical
presentation of main effects and interaction effects is useful to identify key input and output variables and to
understand overall relationships. The screening process should remove from consideration input parameters of little
impact. Second, one or more design goals (e.g., objectives) should be selected. Note that iDSP naturally handles
multi-objective design problems. Third, a set of design requirements (e.g., constraints) should be established. Limits
can be placed on any of the input or output variables. If there is an important requirement that is not met, users may
need to go back to Step 1 and adjust the variable bounds.

Step 4. Generate Pareto Set

When a multi-objective design problem involves conflicting objectives (such as cost and performance), it is not
possible to find adesign that is best in all aspects. Instead, a set of good designsis sought. If a given design is worse
in all objectives compared to another design, it is dominated by the latter. If a design is not dominated by any other
design under consideration, it is called a non-dominated design. A list of non-dominated design points that satisfy all
design requirements is called the Pareto set (or Pareto trade-off surface). The multi-objective problem can be
expressed as:

Minimize f; (X) i=1,..., Ny (D]
Such that gy(x) <0 k=1,..., Neonsr
Xp< X <Xy i=1,...,n
where X ={X1, X2, +..y X}
where Nqyj, Neonsr, @d N are the number of objectives, constraints, and design variables, respectively.

If there are enough design points available from previous steps, they can be compared to each other to identify the
Pareto set. Alternatively, a Pareto set can be generated by running a multiple-objective genetic algorithm (MOGA).
Once the Pareto set is identified, we do not need to consider dominated designs any more because for each
dominated design there will always be at least one non-dominated design that will be better than it in all aspects.

Step 5: Select Preferred Designs

The Pareto set contains valuable information because it consists of best designs in a multi-objective sense. The
Pareto set can be thought of as an optimal trade-off curve. It tells the user what he or she will have to give up in one
aspect in order to achieve gains in another. So the question is: “Which design(s) should be chosen?’. This is where
user preference comes into the decision making process. In Step 4, objectives were applied without preference. In
other words, al objectives were equally important. Now the designer needs to decide which objectives are more
important than others. The relative importance of objectives can be expressed through weighting factors in the total
figure of merit of adesign.

F=2wfj )
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The weighting factors, w; give the relative importance of the j-th objective. Given a set of weighting factors, the
Pareto designs can be ranked according to the combined merit function F. If the weights (e.g., preferences) are
determined, the designer can find the best design (e.g., a preferred design). This process can be repeated to produce
a handful of preferred designs. Because this process does not require new analyses of design points, visualization
tools can quickly present the results to the designer. The designer essentially performs a trade-off study in the
preference space. Because the number of objectives is much less that that of design variables in many cases,
interactive trade-off studies augmented by data visualization tools are very effective in this step.

Step 6: Refine Preferred Designs

Now that we have selected a few preferred designs, chances are that we can improve upon them. In particular, if the
Pareto set was generated from an arbitrary sample without running a MOGA, it is a good idea to perform formal
optimization to refine each preferred design. The optimization problem becomes a single objective problem.

Minimize F=2Xwfi j=1,...,Ngy (3
Such that o(xX) <0 k=1,..., Neonsr

Xp< X <Xp i=1,...,Nn
where X = (Xg, Xgy -y Xo)

The optimization problem would be started from the preferred design. For example, the preferred design can be used
as a starting point for a gradient-based optimizer or seeded into the initial population of a genetic algorithm. If better
designs are found, the original design can be replaced by the improved design. At this point, it is very likely that at
least one design was found that is satisfactory because the designer was in control of the selection process. If thereis
no satisfactory design found, he or she may need to go back to a previous step or redefine the design problem.

I11. Integration of ATSV Visualization Tool

The iDSP process requires an effective means to present and compare many design aternatives. The ARL Trade
Space Visualizer (ATSV) is atool that was developed to meet such needs. Developed by researchers at Applied
Research Laboratory (ARL) at Penn State University, ATSV is a visudization tool that allows users to explore
multi-dimensional trade spaces for complex engineering systems. The ATSV visualization techniques include glyph
plots, histogram plots, parallel coordinate plots, scatter matrices, brushing, linked views, and Pareto Frontier
displays, as shown in Figure 2. Users can select any design and view detailed information pertaining to the design
and its behavior.

As afirst step in building an integrated environment for the design selection process, the ATSV was integrated into
the ModelCenter process integration software. ModelCenter provides integration capabilities for design analysis
software tools and advanced optimization capabilities. Model Center’s plug-in interface was used to integrate ATSV.
When a trade study is performed such as DOE, Monte Carlo simulation, or optimization, ModelCenter stores run
data into a post processing module called Data Explorer. Multiple ATSV plots can be created inside the Data
Explorer infrastructure. The plots are dynamically updated as more data points are computed during trade studies.
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Figure 2: ATSV Visualization tools, a) glyph plot, b) histogram plot, c) parallel coordinates, and d) scatter
matrix.

V. Combining Visualization and Optimization for User Guided Sear ch

Many engineers find it difficult to apply optimizations to their design problems because they do not have good
understanding of workings of the optimizer. If the user lacks understanding of the underlying algorithm, optimizers
may not produce useful results. Even when good optimal designs are found, the engineer can be hesitant to accept
the results because he or she does not understand why the optimizer chose the design. An alternative to using
optimization as a black box is the manual search approach that uses software tools to help visualize the design space
and traverse through layers of data. But this can be aso a challenging approach for complex design problems with
many variables and the engineer is often left with afeeling of arriving at a sub-optimal design.

Update
user

E—
Start and stop
optlmlzatlon
) Visual

candidate designs

Figure 3: User Guided Sear ch combines visualization and optimization.

Add designs
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The idea of User Guided Search (UGS) is to blend these two approaches by combining the best of both formal
optimization algorithms and data visualization techniques. Figure 3 is an illustration of the UGS approach. Note that
the design engineer is in the loop of the design search process. The engineer initiates the optimization process by
providing initial problem definition. As optimization is running, the engineer gets feedback of the optimization
results through visualization and report view of candidate designs. Using the information, he or she makes
adjustment to the optimization process to explorer design space more efficiently and focus on area of interests. The
UGS approach was adopted to support iDSP, particularly steps 4, 5 and 6 to shape user preferences and refine
preferred designs. This section describes the UGS capabilities that are developed as a part of iDSP environment.

A. Problem Definition and Control: iDSP Frontend

To give control of the optimization process to users, a frontend of iDSP was developed called Design Navigator. It
provides capability to adjust optimization search criteria on the fly. The user may change objectives of the
optimization problem by using dlider bars (Figure 4) on the Goals tab. Any of the input or output variables can be
selected as an objective and more than one objective can be selected to minimize or maximize. Constraints of the
optimization problem can be defined using Requirements tab (Figure 5). The constraints can be applied to either
input variables or output variables. For discrete or enumerated variables, users can select individual valuesto specify
constraints. Darwin genetic algorithm (GA) optimizer® was integrated into Design Navigator. The GA can be started
and stopped using VCR type buttons on the display (Figure 4). When more than one objective is specified, Darwin
can be run in a multi-objective mode that searches for Pareto front. If the Pareto Search option is not active, Darwin
uses the combined preference (Eqg. 2) for the objective function.

& NASA SBIR Design Navigator Q@@
Help

Goals || Requirements

Description Cortrols
Science_Payload ... Minimize J 0 Maximize

-100 hescirnize

Total_Sample_Ret... Minimize J 100 hiasiize

Use this dialog b
1

Iy your desian gaals. Vou can choose: Tatal_system_Risk  Minirmize J 0 Maximize
v variable. Each variable can alsa
level (0ta 100).

Transit_Time Minirize J 0 Maximize

Crem sie rinize y) 0 hmanize

@ Pareto Search Optiars... Help:

Figure 4: Goalstab to control user preferences.
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[

Prop_Type Chemical [¥] Electric ‘
O
]
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Trajectory_Type Apollo [¥]SEP [¥] WSE

Figure5: Requirementsto control constraints.

At the end of each GA generation, Design Navigator checks to determine if the user has made any changes. If so, the
optimization problem is modified and the optimization algorithm is restarted. Instead of restarting from scratch each
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time, the optimizer makes use of al of the data generated to that point and does an intelligent warm start. This
maintains the efficiency of the design process and doesn’'t penalize the user for modifying the design problem or
playing what-if scenarios with the data.

B. Real-time Visualization of Optimization Results

When the optimizer is running, all of the visualization plots are updated as new data is available. By observing the
various plots, the user is able to monitor the progress of the optimization process. For a multi-objective problem,
current Pareto set can be highlighted. The optimization engine may be stopped or restarted at any time from the
Design Navigator controls.

C. Report and Comparison of Candidate Designs

Design Navigator provides a report of an individual design. If the user selects a design on a visuaization display, a
dialog called the Design Viewer will be displayed (Figure 6). In this view, the user can see a critique of the selected
design. The value of each input and output variable is listed in a table, along with the goals and constraints of the
design problem. The status of each constraint is highlighted using a simple color scheme: green for satisfied
congtraints, red for violated constraints, and yellow for marginal constraints. At the top of the dialog, the selected
design’s ranking relative to other designs in the dataset is indicated. The top designs are marked with 1 to 5 stars
(depending on their ranking), other feasible designs are marked with a blue dot, and infeasible designs are marked
with ared X. Thisinformation is automatically updated as the optimizer runs and as the user modifies the goals and
congtraints of the problem.

The user can use the Design Viewer dialog to navigate and explore the design space. By pressing the Higher Rank
and Lower Rank buttons at the bottom of the dialog, the user may traverse through the design space in rank order
according to the combined preference value. After each button press, the dialog will be updated to show information
for the new design. The user may also go directly to a specific design by entering either its identification number or
its rank in the text box at the bottom of the dialog. If the user presses the Highlight this Design link, the current
designis highlighted in al open plots. The Design Viewer dialog can be shown for more than one design to compare
them side by side.

D. Automatic Adjustment of Preference

Design Viewer also has a capability to adjust the design goals automatically so asto guide the optimizer into area of
interests. If the user finds a design that he or she likes, use the | Like This Design functionality to automatically
adjust the preference weights so that the design will be ranked as high as possible. Design Navigator solves an
optimization problem internally to minimize the ranking of the selected design i. A downhill Simplex algorithm’ is
used with multi-start to avoid local optima problems.

Minimize ri(w), ranking of designi according to Eq. (2) 4
where w={wy, Wy, ..., Wnobj}

When the weights are adjusted, this will cause the GA optimizer to search for similar designs. The user may also
suggest a new design to the optimizer by pressing the Suggest a Design link. A dialog will appear that will alow the
user to enter any design of their choosing. This allows the user to nudge the optimizer to search in desired directions.
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Figure 6: Design Viewer Dialog shows how a design iscompared to othersfor a given preference setting.

V. An Application of iDSP: Lunar Exploration Mission Example

As an example, the iDSP was applied to design a lunar exploration mission. The scenario is a manned mission to
land on the Moon and explorer its surface. Size of transfer vehicle, trajectory types, mission length, and types of the
launch vehicle are considered to compute cost and risk of the mission. The analysis model in an Excel spreadsheet
uses simple algebraic equations that run quickly. Excel plug-in of Model Center was used to automate execution of
the model.

A. Select Design Parameters

Asthefirst step of iDSP, eight input variables and four response (output) variables are selected (Table 1). The input
variables contain continuous, discrete and enumerated types. There are four response variables and total system risk
and transit time can have only discrete values.

Table 1: Design and response variables of a lunar mission design problem.

Design variables Values, range
N (Crew size) 1,2,34,5
Er (Earth entry type) Direct, aerobraking, propulsive
Pr (Propulsion type) Chemical, electric
Mg (Science payload mass, Kg) 100 ~ 300
Sr (Staging type) Single, LOR (Lunar Orbit Rendezvous)
Ds (Stay duration, days) 5~20
T (Trajectory type) Apollo, WSB (Wesak stability boundary), SEP (Solar electric propulsion)
Nec (Flight control team size) 10~20

Response Variables

Cr (Total mission cost, billion dollar)
Ms (Sample return mass, Kg) -
Ry (Total system risk) 1 (low risk), 2, 3 (high risk)
T (Transit time, days) 3, 60, 300
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B. Generatelnitial Exploratory Designs

The god is to generate a data set for initial analysis of input and output relationship. 576 design points were
generated using a factorial design with two levels for continuous or discrete design variables while all distinct values
were included for enumerated design variables. The DOE was performed and the data was collected in a tabular
form for further analysis.

C. Screen Design Parameters

ANOVA was performed to evaluate relative importance of design variables. Main effects of design variables on
each of the response variables are shown in Figure 7. Crew size was the most important factor both for the total
mission cost and the total sample return mass. The system risk depends on type of propulsion system and choice of
mission tragjectory as well. The mission trajectory was the only meaningful factor for transit time. It turned out that
stay duration and the size of flight control team have no effect on any of the response variables and the earth entry
type had very small effects. The three variables were removed and were not considered in subsequent design studies.
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|
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|
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Figure 7: Main effects of design variables.

D. Generate Pareto Set

It was decided to consider three metrics. total mission cost, total sample return mass, and total system risk. The
problem is naturally formulated as a constrained multi-objective problem:

Minimize Cr (5)
Maximize Mg
Such that Rr<2

We want to minimize the total system cost while minimizing the total sample return mass. The system risk level
should be no greater than 2. Genetic optimizer is well suited to this example that contains both continuous and
enumerated variables. A random sample of size 30 was generated to seed an initial population of the GA run. The
objectives and constraints were set up using the Design Navigator dialog. The Darwin genetic optimizer was run
behind the Design Navigator in a multi-objective mode to generate a Pareto set. The progress of the GA run was
monitored through ATSV plots available. Since the Pareto designs are of particular interests, they were shown and
updated as more data points are computed. Note that iDSP does not require running the multi-objective GA to
complete convergence. The GA run can be stopped and continued as necessary by the designer who can visually
monitor its progress.

GA results after 5 generations are shown in Figure 8. Out of the 106 designs eval uated so far, the Pareto designs are
shown with crosses. The color map of the design points is based on the combined preference according to relative
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weights of the two preferences (cost and sample return mass) that were equally important in this case. Red points
have higher combined preference values. Infeasible design points are shown in gray color. The designer may decide
to continue the Pareto search. Alternatively, the designer can adjust the preferences to narrow down candidate
designs, as was performed in the next step.
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Figure 8: Results after 5 generations of the multi- Figure9: Preferred objective space of mid cost and
objective GA run. high return.

E. Select Preferred Designs

In theory, designers can select any of the Pareto points as an optimal design. However, designers may have reasons
to like one over the other. A scatter plot in the objective space such as Figure 8 is useful since it shows typical
ranges of design objectives. The designer may decide that designs of mid-cost and high performance are preferred.
For example, design #83 is a Pareto point that fits the criteria. Double clicking the design point shows the Design
Viewer that reports that the design is ranked 9 out of the 106 designs. The values of variables are listed in Table 2.
One way to find more designs like thisis to adjusted relative weights of preference so that the selected design ranks
as high as possible. Automatic adjustment of importance level was used that was available from the Design Viewer
and the design was ranked 4 after weight adjustment: 43% for total mission cost and 56% for total sample return
mass. Another way to infuse designer’s judgment is to impose bounds on the objective values. Since we prefer mid-
cost and high return designs, new requirements were introduced:

37<Cr<6.7 (6)
58.9<M5<93.59
Table 2: Preferred designs consider ed.
Design Variables Design Design Design Design Design Design
#383 #22 #45 #69 #95 #176
Nc (Crew size) 4 4 4 4 4 3
P+ (Propulsion type) Chemical Chemical Chemical Chemical Electric Chemical
Mg (Science payload mass, Kg) 2195 289.1 191.0 202.3 278.0 294.3
Sr (Staging type) Single Single Single Single Single Single
T+ (Trajectory type) Apollo Apollo Apollo Apollo Apollo Apollo
Response Variables
Cr (Total mission cog, billion dollar) 5.427 4.507 5.263 5.328 5.764 5.197
Ms (Sample return mass, Kg) 70.86 59.91 66.68 68.33 79.58 71.37
Ry (Total system risk) 1 1 1 1 1 1
T (Transit time, days) 3 3 3 3 3 3

Figure 9 shows that there are five Pareto points including design #83 that fall on the constrained objective space.
Their design values are listed in Table 2 (Designs #83, 22, 45, 69, and 95). It was found that the first four designs
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belong to a family of the same configuration with different science payload mass. Design #95 belongs to a different
family that uses electric propulsion instead of chemical one.

F. Refine Preferred Designs

Darwin GA was performed to explorer more design points in the constrained objective space. This time Darwin was
run in a single objective mode that maximizes the weighted sum of the objectives. Figure 10 shows the objective
space after 6 generations that contains 199 designs. Note that design #83 is not a Pareto point anymore because a
new design (design #176) was found that dominates it. In fact, three designs in the original Pareto set are dominated
and the new Pareto set consists of seven designs. By focusing on area of interests, we were able to improve a set of
preferred designs more effectively. If we compare designs #83 and #176 from Table 2, the latter trades crew size by
one to increase the science payload mass. And the net effect was increased sample return mass and lower cost.
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Figure 10: Improved design point after 6 generations kg re 11: Glyph plot highlightslocation of Pareto

Although we have illustrated this example using 2D scatter plots, combination of different plots was also used to
examine the data set in different views. Figure 11 shows feasible design points out of the 199 designsin a 3D glyph
plot. The Pareto points were shown with crosses and it can be observed that the Pareto points have crew size of
between 2 and 4.

V1. Concluding Remarks

Engineering design is a complex decision making process. This paper defined a new design process that helps
designers collect design data and make informed decisions at each step in the process. The new process called
Interactive Design Selection Process (iDSP) follows the design by shopping paradigm that allows designers to build
preferences through comparison of candidate designs. iDSP is an inherently multi-objective design process and it
covers entire design selection process including design problem definition, Pareto set search, user preference
definition, and final down-select. Interacting through design space visualization tools, users maintain control
throughout the design selection process. As a result, the user is much more likely to find a satisfactory design
compared to the traditional black box optimization approach.

A prototype of iDSP was developed by integrating ATSV, an advanced design space visualization tool, with the
ModelCenter process integration tool. The ATSV plug-in has capabilities to visualize candidate designs generated
by ModelCenter. Multiple plots can be presented so that the same data can be examined in different perspectives at
the same time. The iDSP implementation utilized the concept of the User Guided Search to provide capabilities of
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interactive design space search by combining visualization and optimization. The iDSP frontend enables users to
influence the automated search of an optimizer by adjusting objective preferences or constraints on the fly.

A Lunar space mission design problem was presented to demonstrate the iDSP techniques. ANOV A analysis was
used to screen variables of little importance. The GA optimizer was first run to find a Pareto set. Characteristics of
the promising design points were examined using the design report view. It helped refine the preference and
requirements of the design problem and the GA optimizer was run to find more designs in the area of interests. Asa
result, better designs that dominate previous Pareto designs were found. The iDSP capabilities are being extended to
provide a step by step guidance so that non-expert users can perform design studies more effectively.
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