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Designers can simulate thousands, if not millionspf design alternatives more cheaply
and quickly than ever before with today’s computingpower; however, the resulting data can
overwhelm designers without proper tools to supporimulti-dimensional data visualization.
In this paper, we discuss the use of a multi-dimemmal data visualization tool and visual
steering commands which allow designers to navigateulti-attribute trade spaces. The
novelty in our work is providing designers with a &t of visual steering commands to
simultaneouslyexplore the trade space andxploit new information and insights as they are
gained. Specifically, designers caexplore the entire design space (either sampled randomly
or manually) or along the entire Pareto front usingthe Basic Sampler, Point Sampler,
and/or Pareto Sampler. Alternatively, they carexploit information they have gained during
the exploration process by searching near a spedfpoint of interest or within a region of
high preference using the Attractor, Preference Sapiler, and/or Guided Pareto Sampler.
Examples of each are included in this paper. Mearhile, a suite of test problems is being
formalized to support our trade space exploration —algorithmic development as well as
empirical studies involving human decision-makers.This work supports our long-term goal
of quantifying the benefits of putting humans bacK'in-the-loop” during design optimization.

. Introduction

ESIGNERS can simulate and evaluate thousands,tifmillions, of design alternatives more cheaply and

quickly than ever before with today’s computing gow Even computationally expensive analyses canb®
replaced by metamodels (e.g., response surfacéal radsis functions, and kriging models) to enaldgid
simulation of new design alternatives. These advancements are enabling revolutionsaifetspace exploration
processes, particularly for the design of complesteams such as automobiles, aircraft, and satellitewever, the
resulting data can lead to information overload amdrwhelm designers when appropriate tools to suppulti-
dimensional data visualization are not employedbl& A provides a summary of the graphical cap#sliof 19
commercial and noncommercial software packagesatigaavailable and used frequently for multi-dimenal data
visualization. This is an updated summary of @itveare review five years ago.

The basic tenet of trade space exploration isltavadlesigners to simulate numerous design alterest@nd then
visualize them while forming their preferences #dest the best design — anposterioriapproach to decision-
making? Often referred to as “Design by Shopping” to dr&#hlling,” trade space exploration entails three basic
steps as shown Figure 1. First, a simulation mddels created to analyze the system. This moddiucap the
relationships between design inputs,and performance outputg, which are often unknown (i.e., the model may
be a “black box”). Experiments are then run towate hundreds, thousands, or millions of desigeradtives
depending on available computational resourcesarying X and storing the corresponding valuesYdfor each
alternative. Interactive visualization tools aher used to explore theade spaceZ = [X:Y], to find the most-
preferred poinZ .
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Figure 1. Typical Approach to Trade Space Explorann®

This type of approach is advocated by many reseasadh the literature. For instance, Messac anenOhere
among the first in the multidisciplinary design iopzation (MDO) community to propose and demonstrah
interactive visualization method wherein the pragref the optimization is visualized throughout gitecess. To
help optimize architectural layouts, Michalek armp®ambroSpropose a methodology to “dynamically change the
optimization representation on-the-fly by addingleting, and modifying objectives, constraints, atdictural
units.” In a similar fashion, Visual Design Stewfi'® allows users to stop and redirect the optimizafioscess to
improve the solution; however, their visualizatioapabilities are limited to 2-D and 3-D represeotet of
constraints and objectives. Cloud VisualizatibBrickViz,*? and the Advanced Systems Design Stilttaddress
some of the multi-dimensional data visualizationitations of Visual Design Steering, and recentlmy Agrawal,
et al’>'® provides a novel means for visualizing Pareto tsdhat span n-dimensions. Meanwhile, Ross, &t al.
have introduced a framework for multi-attributedigasspace exploration. The emphasis in their wodknithe use of
multi-attribute utility theory to integrate desigaepreferences for multiple objectives, not theudlization of the
results,per se as in our case. Our approach for visualizingtiralimensional data is discussed next and is fadidw
by an overview of the visual steering commands wWehave developed to support trade space exmaratection
IV describes the suite of test problems that weehdeveloped to support our research in trade spgueration,
and Section V provides closing remarks and dissusegoing work and future research.

1. Multi-Dimensional Data Visualization with ATSV

To support multidimensional data visualization aapproaches to trade space exploration, we are ubing
Applied Research Laboratory’s Trade Space Visuali2d SV),'®*° a Java-based application that displays multi-
dimensional trade spaces using any combinatioryphg 1-D and 2-D histograms, 2-D scatter, scatiatrix, and
parallel coordinate plots, linked viewsand brushing® Figure 2 shows several examples of the multi-disienal
data visualization capabilities in ATSV, many of iefh are common to other commercially available wafe
packages as noted in Table A. We note, howevat,ttie 3D glyph plot (top left of Figure 2) usedAASV is
unique in that it can display up to seven dimersioy assigning different variables to the x-, yig @-axes and the
size, color, orientation, and transparency of titividual glyph icons. Text can be added to eamhtpn the glyph
plot to represent an eighth dimension, and brustamgbe used to dynamically vary a ninth dimensianyever, we
find that most users only visualize 4-6 dimensiahany given time, which we attribute to Miller'sZ rule?
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Figure 2. Multidimensional Visualization Example$®

The design variable (input) and performance (oQtdata for different alternatives can either beggated off-
line and then read into ATSV for visualization aménipulation (i.e., a “static” dataset) or it ca@ penerated
dynamically “on-the-fly” by linking a simulation nael directly with ATSV using its Exploration Engine
capability® If the simulation model is too computationallypexsive to be executed in real-time, then low-figel
metamodels can be constructed and used as apptiiséor quickly searching the trade spaéeOnce this link
to the simulation model is in place, ATSV providesuite of visual steering commands to help desiggnavigate
the multi-attribute trade space as discussed next.

lll.  Visual Steering Commands

The novelty in our approach to trade space exptordies in providing designers with a set of visateering
commands to simultaneousixplorethe trade space amkploit new information and insights as they are gathed.
Specifically, designers caxplorethe entire design space (either sampled randomiyamually) or along the entire
Pareto front using the Basic Sampler, Point Sam@ed/or Pareto Sampler. Alternatively, they exploit
information they have gained during the explorapoocess by searching near a specific point ofésteor within a
region of high preference using the Attractor, Erefice Sampler, and/or Guided Pareto Sampler. nfrsuy of
each type of sampler follows using the aircraftgviiizing example described in Section IV. We réffierreader to
Ref. 6 for more details on the first five samplethe Guided Pareto Sampler is unique to this paper

A. Basic Sampler & Point Sampler:These two samplers are used to populate the sqzat=e either randomly or
manually and are typically invoked if there is mitial data available, i.e., they are used prinyatd explorethe
design space at the start of the trade space atiglorprocess. When sampling randomly, the usecifies the
number of samples that will be generated and thend® of the multi-dimensional hypercube Xfas shown in
Figure 3a. Monte Carlo simulation then randomlyngkes the inputs — drawing from a uniform or normal
distribution as shown in Figure 3b — and executesstmulation model a user-specified number of ¢inséoring the
corresponding output in the database. The bouhdlseodesign variables can be reduced at any torgas the
samples in a smaller region within the design sjifeabesired.
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Figure 3. Example of Basic Sampler and Input Distitbutions

With the Point Sampler, users can manually sanffedesign space by moving slider bars for eacht ingtiable
using the controls shown in Figure 4a. As such,Rbmt Sampler allows designers to perform onesfaat-a-time
parametric studies of the simulation model if tipegfer this to random sampling. After moving alsti bar, the
simulation model is executed at the design poiet#igd by the current settings of all the slidards An example
is shown in Figure 4b where the user examined #n@tion of wing span on system cost while holdavgrything
else at the settings shown in Figure 4a. Thisatiarn was performed after randomly sampling 10Gsaio identify
a good starting point for one-factor-at-a-time ations.
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Figure 4. Example of Point Sampler for Manual Desig Space Sampling

B. Pareto Sampler: The Pareto Sampler generates new points alongdheto front as the name implies. It is
helpful in exploring the trade space, particulanfgen multiple objectives are important. This regsiiusers to
indicate their direction of preference (e.g., miizienor maximize) for each objective of interest.heTPareto
Sampler uses the Pareto Differential Evolution ethm developed by Madavihas the underlying search
algorithm. Figure 5 shows an example from theraftaving sizing problem where the user wants taimize cost
and maximize range without having to assign imputaweightings to either objective. The Paretmisoare
denoted by+'s in both figures where Figure 5a shows the ihifiant and Figure 5b shows the front after 500
function evaluations. In both figures, red poiate the feasible points after screening off intelaspoints based on
the constraints (see Section IV.C) while the greints show all the points that were searched. Véecarrently
working to improve the constraint handling techmigwvithin this search algoritffito make more efficient use of
function evaluations when exploring the Paretotfron
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Figure 5. Example of Using the Pareto Sampler to khtify the Pareto Front

C. Attractor: The attractor generates new sample points neaemspecified point in the trade space, allowing
users teexploitnew information and insights that are gained adridwde space is explored. The attractor is Spdcif
in the ATSV interface with a graphical ic«® that identifies am-dimensional point in the trade space, and then
new sample points are generated near the attraaipoes close as they can get to it. An exampdhdsvn in Figure
6 where the user specifies an attractor to gendsateost designs for the aircraft wing sizing desh while also
attempting to fill in a “gap” in the trade spacedd-igure 6a). The new samples are clustered dutiractor_1 as
seen in Figure 6b. Since the attractor can bepamyt in the trade spacé, it can consist of anp-dimensional
combination of the inputs, and outputsy, and it can consist of discrete and continuousatses. Consequently,
we have selected Differential Evolution (BEjo guide this sampling process where the fitnesstfon in DE is
defined the Euclidean distance from each sampletgoithe center of the attractor. For more dgtail the DE

implementation within ATSV and the formulation bitfitness function, we refer the reader to Ref.
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Figure 6. Example of Attractor Used to Exploit Information Gained during Trade Space Exploration

D. Preference Sampler:The Preference Sampler populates the trade spacegions that perform well with

respect to a user-defined preference structure (mportance weightings for each objective of iagt).

New

sample points are generated using ®But the fitness function is now defined by therisspreference structure
based on the settings of the Brush/Preference @entrA linear weighted sum is currently used foe fitness
function® however, alternative formulations could easilyimplemented within ATSV.
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An example is shown in Figure 7 where minimizingtds deemed to be twice as important as maximiznge.
The points are color coded in the plot to indidae direction of preference (see Figure 7a), aedréisulting new
samples in the region of high preference are tagitéid in Figure 7b. Meanwhile, Figure 7c showsgéitings of
the Brush/Preference Controls for this particulef@rence structure.
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Figure 7. Example of Preference Sampler and Corresmding Brush/Preference Control$®

E. Guided Pareto Sampler:The Guide Pareto Sampler combines the power od&tirs with the multi-attribute
exploration capabilities of the Pareto Sampler ltovausers to modify the search for Pareto pointsdal-time,
exploiting information that is gained during thade space exploration process. The newest ofisualvsteering
commands, this sampler also uses the Pareto Diffat&volution algorithm developed by Madavérut the user
can now play a supervisory role and interact with nderlying algorithm by:

» Select specific points within the data visualizatisndow and use them to seed the initial genematio

« Guide Pareto search algorithms to regions of istarsing Attractor icon.

e Start, pause, and stop the search with the akldlighange initial generations and guide directions.
These interactions allow users to input, change, adjust their preferences without being overlyelmmed by
constantly inputting new visual steering commands.

An example of the Guided Pareto Sampler is showrigare 8. An initial Pareto analysis is performedhere
both f1 and f2 are minimized (see Figure 8a). prablem is heavily biased towards f1, and the tagylPareto
frontier includes only one point. The plot showsi@e region that has not been explored, and iaruss a Guided
Pareto Sampler to search for the frontier in thigion. An attractor is first placed in the lowgght-hand region of
the scatter plot. Additionally, the user has thiity to select points to seed the initial genematbefore starting the
sampler. The Guided Pareto Sampler uses thisni#on to perform its Pareto search, where seledimtegies
involve each generation’s fittest members baselatin Pareto optimality and their position relativehe Attractor.
Currently, half of each generation’s members alecsed based on Pareto optimality and half arecssdebased on
closest distance to the Attractor, but this usétirgecan be modified as needed. As seen in Fighrahe resulting
Guided Pareto Sampler has captured new Paretoapasigns in regions of the trade space that wdielly void
of data. Our implementation could easily be ex¢éehth provide users with more detailed controlshsas allowing
users to select each generation’s fittest memintiange the crossover methodology, or adjust theegabf the
algorithm’s search parameters.
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Figure 8. Process of Using Guided Pareto Sampler ®earch Trade Space

IV. Test Problems

A suite of test problems has been developed to stupur research in trade space exploration. TFhite
currently includes complex systems designed fod,|aea, air, and space: (1) configuration of vehodncepts, (2)
conceptual design of a cargo ship, (3) sizing ofamoraft wing, and (4) design of the external ftetk for the
Space Shuttle. An overview of each of these probl®llows along with visuals of their trade spaces

A. Vehicle Configuration Example: The vehicle configuration example was developedadnjunction with
researchers at General Motors and SUNY-Buffaloviauate the technical feasibility of new vehiclencepts?®?’
The model includes five objectives — acceleratfore] economy, and three measures of interior accodation —
and eleven high-level vehicle design parameters:ctitinuous variables that define overall extedonensions
and positions of the occupants, and one discretiabla that specifies the vehicle’'s powertrain. isTkehicle
configuration model also computes vehicle massckvis neither a design variable nor a performargeabive as
customers do not usually have a preference on #ighivof their car; however, vehicle mass is a finmcof many
design variables and it strongly influences manggsmance objectives that are important to custenierg., fuel
economyf’ The model also computes the total violation btahstraints in the model EonVig.

Table 1 summarizes the problem definition. Bouodsthe 10 continuous design variables are nornhline
[0,1], and the objectives are scaled against tisellvee model — defined as the feasible p&ist (1,1,1,1,1,1) — to
protect the proprietary nature of the data. TheigievariableH, defines the powertrain and can take one of six
options: [1,2,3,4,5,6]. Finally, the direction mfeference for each objective is indicated in #Hig#e. While stating
these general preferences beforehand may seemecantutitive, the end goal is to determine the hpesnt in the
trade space, and to do this, we would need to fypeaights for each objective to aggregate thero atsingle
objective function using a weighted-sum, for ins&rhowever, these weights are not specified. rAdiiively, we
could use a multi-objective genetic algorithm téedmine the Pareto front as done previodSkyut that yields a set
of non-dominated designs, not a single point; hetite example lends itself well to trade spacdargtion.
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Table 1. Vehicle Problem Definition

Model Inputs
Variable | Lower Bound Upper Bound
A 0 1
B 0 1
C 0 1
D 0 1
E 0 1
F 0 1
G 0 1
H 1,2,3,4,5 0r6
[ 0 1
J 0 1
K 0 1

Model Outputs

ConVio| 0 - feasible > (0> infeasible
Mass | Baseline = 1| Defines weight class
Objl | Baseline=1 Smaller is better|
Obj2 | Baseline=1 Larger is better
Obj3 | Baseline=1 Larger is better
Obj4 | Baseline=1 Larger is better
Obj5 | Baseline=1 Larger is better

Figure 9 shows an example of the multi-attributedér space for the vehicle configuration model, Wwhias
obtained using a combination of Basic Samplingfd?emce Sampling, and Attractors. The glyph phatudes iso-
surfaces to indicate different vehicle weight ctesssand a promising option is found that impro@ég3, Obj4, and
Obj5 by 3%, 9%, and 13%, respectively, with only a 286éréase i©bj1 andObj2.
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- @) C=0.15299257
D=0.487325
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39373374
40973753 | |Other Files
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- @) 1=0.6279587
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98583275
=1.0665292
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- Objz=0,98522305
Ohj3=1.0341709

- Obj4=1,1093178

- Obj5=1,1259643
Conio'=439.0

Bar and Line Chart
Expart Point Data

Figure 9. Glyph Plot of Vehicle Trade Space Showinllass Contours and a Promising Desigh

B. Conceptual Ship Design:The conceptual ship design example is a multiaibje optimization problem
adapted from the literatuf&?® Following the formulation in Parsons and Sédthe analytical model approximates
a family of bulk carriers with deadweight betwee@(®-50,000 tons and speeds of 14-18 knots. Isixdasputs:
Length (m): 150 4. <274.32
Beam (m): 21 B <32.31
Depth (m): 12 <D <25
Draft (m): 9.5 <T <11.71
Block coefficient; 0.63 <C5 <0.75
Speed (kts): 14 ¥, <18

ogkrwnE
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Lower bounds have been added to the original faatiar for L, B, D, and T to reduce the design spdwed is
searched; however, the reported solutions are egmassed within these bounds. There are three oalgechf
interest: (1) minimize transportation costs, (2)ximaze annual cargo, and (3) minimize lightship ggi and there
are 9 constraints in addition to the design vaedtdunds®

Figure 10 illustrates how parallel coordinates barused to place an Attractor in more than two dsiens when
exploring a multi-attribute trade space. The @sign variables and three objectives are showiguaré 10a based
on the results from 100 random samples generated tise Basic Sampler. The Attractor is then plase as to
minimize transportation costs (TC) and lightshipigie (LSM) and maximize annual cargo (AC). Theelnare
color-coded based on this preference (red = madfeped, blue = least preferred) where all threfealves are
equally weighted (see Figure 10b). The brush otsin Figure 10b are used to define the feasitsléet space, and
the resulting solutions after 500 new points areegated with the Attractor as shown in Figure liddeésible
points in gray) and Figure 10d (infeasible point$ shown). These last two figures are particularbightful since
they indicate that low-to-medium values of L, higidues of B, low values of D andz@ead to highly preferred
feasible designs (i.e., the location where bandsdflines cross the vertical line for each desigrniable). Even
though T and Y seem to vary widely, this information helps redtiee search space for the step in the trade study.
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Figure 10. Example of Using Parallel Coordinates t®lace an Attractor in Multiple Dimensions
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C. Aircraft Wing Sizing Problem: The aircraft wing sizing problem, developed in jomction with engineers at
The Boeing Company, involves sizing the plan vieayout of an aircraft wing to minimize its cost seddj to
constraints on range, buffet altitude, and takdieftl length®® The designer can manipulate six design variables
over the following ranges:

1. Semi-span: 900 $pan <1150

2. Aspectratio: 8 AR <13

3. Quarter chord sweep angle: 3Bweep <37

4. Taper ratio: 0.15 Japer <0.25

5. Sparbox root chord: 0.75¥Coff < 1

6. Fan diameter: 80 £anDiam <90
These design variables are defined in Figure 1d the specified ranges define the upper and lowands for the
design space samplers shown in Figure 3.

fe— vcoit
Tsweep\ . .\ T G

angle o

< Aspect ratio = Wi pT
Fan diameter g Ing Area

]
E
% Tip chord

: Taper ratio =

Key: Wing P Root chord
Spar otr

Nacelle chord

Figure 11. Design Variables for Wing Sizing Problem

The constraints and objective for the wing sizimghtem are evaluated using second-order resporfacsu
models constructed from a 243-point orthogonalyasraetails can be found in Ref. 30. The actuélles of cost,
range, buffet altitude, and takeoff field lengthvéddeen normalized to [0,1] based on the minimuch maximum
values observed in the sample data due to theprigtary nature. The original optimization probleras stated as:

Minimize: Cost (1)
Subjectto:  Range >0.589

Buffet altitude >0.603

Takeoff field length ©.377

We have made several modifications to this fornioiato make the problem multi-objective in natureluding
maximizing range while minimizing co&t. These new formulations have allowed us to stuthaacements to the
underlying DE algorithm, including the incorporatiof constraint dominan&eto automatically handle constraints
when exploring the trade space. In particulardbenination of two solutionsand] is modified to be:

A solutioni constraint-dominates solutigiif any of the following conditions are true:

1) iis feasible andlis infeasiblei constraint-dominates

2) iandjare feasible: ifPareto dominatgs theni constraint-dominates

3) i andj are infeasible: if dominateg in the constraint-violation space, thietonstraint-dominates

Prior to this work, our general philosophy has beeexplore the entire trade space — feasible afehsible —
when searching and then using brushing to filterimfeasible points since some constraint limits/rohange as the
problem evolves. In highly constrained trade spabewever, this is not an efficient use of functevaluations.
An example of the impact can be seen in Figure h@re/the user may think the Pareto front spansge lortion
of the trade space when in reality the feasiblespsa quite small (see Figure 12b). Constraintidance allows
users to make more efficient and effective useea function evaluations when using the Attractod amarious
samplers if it is knowm priori that the problem is highly constrained or has alkfeasible trade space; if not, then
using brush controls to manually filter out infddsidesigns or Attractors to bias samples in thsifde regions are
more promising strategiés.
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D. Space Shuttle External Fuel Tank Design ProbleniThis problem was originally developed by Dr. Jéaas
Sobieski, formerly of NASA Langley Research CenteHampton, VA, to illustrate how changes in a peotv's
objective function influence the resulting optinssign® The overall objective is to improve NASA’s Retuwn
Investment (ROI) for the Space Shuttle by resizisgxternal fuel tank. The external fuel tankligided into three
hollow geometric segments: (1) a cylinder (lengthradius R), (2) a hemispherical end cap (raéiysand (3) a
conical nose (height, radiusR), as shown in Figure 13. These segments haviendsses;, t,, andts, respectively.
Each segment is assumed to be a monococque shelirected from aluminum and welded together fromr fo
separate pieces of material, resulting in a tatéborteen welded seams. Surface areas and volaneedetermined
using geometric relations, and first principles antks of thumb are used to calculate stressesatidmn modes,

aerodynamic drag, and cost using the analysesfirBRe
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(a) External fuel tank configuration

Figure 13.

(b) PhotKannedy Space Center
Space Shuttle External Fuel Tar¥

The optimization problem is formulated based ondtiginal model as follows:

ROI 2)
Volume constraint:
28265V, < 3026=|V, - 100- 2928
Stress and vibration constraints
0,,<400 =0, -400< (
08<{=08-¢<0
Design variables bounds:

Maximize:
Subject to:

0.01<L,<5.0 0.25 <42,< 2.0
0.50 <R, < 2.0 0.25 <3,< 2.0
0.25 <t1,< 2.0 0.10 <h/R, < 5.0
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The objective is to maximize ROI subject to the gtomints on the tank volume and stresses and boamdise
design variables. The restriction on tank volusi@rn equality constraint (~3000° /- 100 ), which we have
found difficult to meet when using ATSV. The tavddume is dependent upon three parameterf( h/R, and the
problem has been reformulated so that the desicarevary any two parameters while the third is depat upon
these two (i.e., specify values fBrandh/R and computd. to satisfy the volume constraint). Finally, inajty
constraints are placed on the maximum allowablepmrant stress and on the first bending moment eftahk.
The equivalent stress experienced by each compaa@nibt exceed the maximum allowable stress ofrthterial
is used. Also, the first bending moment of thektarust be kept away from the vibrational freques@gperienced
during launch to avoid any potential failures.

This problem is currently being used to test arithisted version of ATSV, one where subsystem desigoontrol
their own local objectives (e.g., minimize cost,nimize drag penalty, maximize payload, minimizeustural
weight) and then collaborate to optimize the ovesgdtem®® An interesting outcome from these studies isomby
how to improve ATSV to support distribute collabimwa but also the importance of properly communigatesign
information between team members. An example @asvehin Figure 14 where the color-coding indicatéfedent
users. The structural engineer (red points in féidid), having the most constraints to satisfy,semg being the
most effective in finding good solutions. The eragrs concerned with payload (in green) and costgllow) find
many designs that have high ROI and low cost (dgar& 14a), but without any knowledge of the stuak
engineer’s constraints, the majority of their dasigurn out to be infeasible once all constrainscansidered at the
system level (see Figure 14b). By focusing onlytleir local subsystem constraints during theirdeathey
“overshot” the feasible region from the system’sspective. Even though our findings are prelimm#hey stress
the importance of proper communication during duilative trade space exploration.

Cost vs. ROI Cost vs. ROI
1.58TEt

1.587E

1.100E8|

1.180E8|

3.967ES| 3.987E5

o -
2614 -1.626 -0.759 T og gl 2.514 1.636 0750 o119 1,906
ROI g ‘ User . < ROI 5 ‘ LUser ' 5
(a) Pareto front of entire trade space withoutst@ints (b) Pareto front of feasible space (graipts are infeasible)

Figure 14. Trade Space Exploration by Different Subystem Designers

V. Closing Remarks and Future Work

As discussed in this paper, multi-dimensional désaalization and visual steering commands allosigieers to
navigate multi-attribute trade spaces in more Visua intuitive ways. The novelty in our work isopiding
designers with a set of visual steering commandsirttultaneouslyexplore the trade space angkploit new
information and insights as they are gained. Desig carexplorethe design space randomly or manually using the
Basic Sampler or Point Sampler, respectively, ardefor the Pareto front in a multi-attribute tagpace using the
Pareto Sampler. Designers can a@sploitinformation obtained during this exploration preséy searching near a
specific point of interest using the Attractor, lniit a region of high preference using the PrefezeBampler, or
guiding the search for the Pareto front using thel€&d Pareto Sampler.

To support our research in trade space exploratierhave developed a suite of test problems. pmblems are
discussed in this paper, spanning land, sea, a,space applications: (1) configuration of vehictacepts, (2)
conceptual design of a cargo ship, (3) sizing ofamoraft wing, and (4) design of the external ftahk for the
Space Shuttle. The problem formulation and exasfilem the trade space exploration process areded for
each problem, and more complex problems are cilyrbeing developed and sought to expand the tétst. su
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This suite of problems is enabling scientific saglifor algorithmic development as well as empirsidies
involving human decision-makers. For example, we fane-tuning the evolutionary algorithm that uras our
visual steering commands to make them more effiaenl robust’ In conjunction with this, we are developing
new samplers to enable the Most Informative Samiost Uncertain Sampler, etc., which support défe
aspects of the “Design by Shopping” procésale also envision a “detractor” or “repeller” thabrks in reverse of
an attractor, i.e., it generates points that areT Nike the user-specified point. We are also stgrto conduct
experiments to quantify the benefits of putting lams back “in-the-loop” during the design optimiratiprocess.
Preliminary results are very promising: designessg the visual steering commands within ATSV tdveche
vehicle configuration problem have shown a 4x-7priovement in efficiency over optimization algoritemunning
“plindly” without any human interventioft. We are currently planning studies involving theire suite of test
problems to further substantiate these findingsgerkralize our results.
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Appendix

Table A. Summary of Graphical Capabilities and Datalnput Formats for Multi-Dimensional Data Visualization Software Packages
(Y = has this capability, N = capability not availdle; $ = least expensive, $$$ = most expensive)
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