
 
American Institute of Aeronautics and Astronautics 

 

1 

Visual Steering Commands and Test Problems to Support 
Research in Trade Space Exploration 

Timothy W. Simpson* and David B. Spencer† 
The Pennsylvania State University, University Park, PA, 16802 USA  

Michael A. Yukish‡ and Gary Stump§ 
The Applied Research Laboratory, State College, PA 16804 USA 

Designers can simulate thousands, if not millions, of design alternatives more cheaply 
and quickly than ever before with today’s computing power; however, the resulting data can 
overwhelm designers without proper tools to support multi-dimensional data visualization.  
In this paper, we discuss the use of a multi-dimensional data visualization tool and visual 
steering commands which allow designers to navigate multi-attribute trade spaces.  The 
novelty in our work is providing designers with a set of visual steering commands to 
simultaneously explore the trade space and exploit new information and insights as they are 
gained.  Specifically, designers can explore the entire design space (either sampled randomly 
or manually) or along the entire Pareto front using the Basic Sampler, Point Sampler, 
and/or Pareto Sampler.  Alternatively, they can exploit information they have gained during 
the exploration process by searching near a specific point of interest or within a region of 
high preference using the Attractor, Preference Sampler, and/or Guided Pareto Sampler.  
Examples of each are included in this paper.  Meanwhile, a suite of test problems is being 
formalized to support our trade space exploration – algorithmic development as well as 
empirical studies involving human decision-makers.  This work supports our long-term goal 
of quantifying the benefits of putting humans back “in-the-loop” during design optimization.   

I.  Introduction 
ESIGNERS can simulate and evaluate thousands, if not millions, of design alternatives more cheaply and 
quickly than ever before with today’s computing power.  Even computationally expensive analyses can now be 

replaced by metamodels (e.g., response surface, radial basis functions, and kriging models) to enable rapid 
simulation of new design alternatives.1,2  These advancements are enabling revolutions in trade space exploration 
processes, particularly for the design of complex systems such as automobiles, aircraft, and satellites; however, the 
resulting data can lead to information overload and overwhelm designers when appropriate tools to support multi-
dimensional data visualization are not employed.  Table A provides a summary of the graphical capabilities of 19 
commercial and noncommercial software packages that are available and used frequently for multi-dimensional data 
visualization.  This is an updated summary of our software review five years ago.3 

The basic tenet of trade space exploration is to allow designers to simulate numerous design alternatives and then 
visualize them while forming their preferences to select the best design – an a posteriori approach to decision-
making.4  Often referred to as “Design by Shopping” to credit Balling,5 trade space exploration entails three basic 
steps as shown Figure 1.  First, a simulation model, M, is created to analyze the system.  This model captures the 
relationships between design inputs, X, and performance outputs, Y, which are often unknown (i.e., the model may 
be a “black box”).  Experiments are then run to simulate hundreds, thousands, or millions of design alternatives 
depending on available computational resources by varying X and storing the corresponding values of Y for each 
alternative.  Interactive visualization tools are then used to explore the trade space, Z = [XMY]T, to find the most-
preferred point Z*.   
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Figure 1. Typical Approach to Trade Space Exploration6 

This type of approach is advocated by many researchers in the literature.  For instance, Messac and Chen7 were 
among the first in the multidisciplinary design optimization (MDO) community to propose and demonstrate an 
interactive visualization method wherein the progress of the optimization is visualized throughout the process.  To 
help optimize architectural layouts, Michalek and Papalambros8 propose a methodology to “dynamically change the 
optimization representation on-the-fly by adding, deleting, and modifying objectives, constraints, and structural 
units.”  In a similar fashion, Visual Design Steering9,10 allows users to stop and redirect the optimization process to 
improve the solution; however, their visualization capabilities are limited to 2-D and 3-D representations of 
constraints and objectives.  Cloud Visualization,11 BrickViz,12 and the Advanced Systems Design Suite13,14 address 
some of the multi-dimensional data visualization limitations of Visual Design Steering, and recent work by Agrawal, 
et al.15,16 provides a novel means for visualizing Pareto fronts that span n-dimensions.  Meanwhile, Ross, et al.17 
have introduced a framework for multi-attribute trade space exploration.  The emphasis in their work is on the use of 
multi-attribute utility theory to integrate designers’ preferences for multiple objectives, not the visualization of the 
results, per se, as in our case.  Our approach for visualizing multi-dimensional data is discussed next and is followed 
by an overview of the visual steering commands that we have developed to support trade space exploration.  Section 
IV describes the suite of test problems that we have developed to support our research in trade space exploration, 
and Section V provides closing remarks and discusses ongoing work and future research. 

II.  Multi-Dimensional Data Visualization with ATSV 
To support multidimensional data visualization and approaches to trade space exploration, we are using the 

Applied Research Laboratory’s Trade Space Visualizer (ATSV),18,19 a Java-based application that displays multi-
dimensional trade spaces using any combination of glyph, 1-D and 2-D histograms, 2-D scatter, scatter matrix, and 
parallel coordinate plots, linked views,20 and brushing.21  Figure 2 shows several examples of the multi-dimensional 
data visualization capabilities in ATSV, many of which are common to other commercially available software 
packages as noted in Table A.  We note, however, that the 3D glyph plot (top left of Figure 2) used in ATSV is 
unique in that it can display up to seven dimensions by assigning different variables to the x-, y-, and z-axes and the 
size, color, orientation, and transparency of the individual glyph icons.  Text can be added to each point in the glyph 
plot to represent an eighth dimension, and brushing can be used to dynamically vary a ninth dimension; however, we 
find that most users only visualize 4-6 dimensions at any given time, which we attribute to Miller’s 7+2 rule.22 
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Figure 2. Multidimensional Visualization Examples23 

The design variable (input) and performance (output) data for different alternatives can either be generated off-
line and then read into ATSV for visualization and manipulation (i.e., a “static” dataset) or it can be generated 
dynamically “on-the-fly” by linking a simulation model directly with ATSV using its Exploration Engine 
capability.6  If the simulation model is too computationally expensive to be executed in real-time, then low-fidelity 
metamodels can be constructed and used as approximations for quickly searching the trade space.1,2  Once this link 
to the simulation model is in place, ATSV provides a suite of visual steering commands to help designers navigate 
the multi-attribute trade space as discussed next.   

III.  Visual Steering Commands 
The novelty in our approach to trade space exploration lies in providing designers with a set of visual steering 

commands to simultaneously explore the trade space and exploit new information and insights as they are gained.6  
Specifically, designers can explore the entire design space (either sampled randomly or manually) or along the entire 
Pareto front using the Basic Sampler, Point Sampler, and/or Pareto Sampler.  Alternatively, they can exploit 
information they have gained during the exploration process by searching near a specific point of interest or within a 
region of high preference using the Attractor, Preference Sampler, and/or Guided Pareto Sampler.  A summary of 
each type of sampler follows using the aircraft wing sizing example described in Section IV.  We refer the reader to 
Ref. 6 for more details on the first five samplers – the Guided Pareto Sampler is unique to this paper.   
 

A. Basic Sampler & Point Sampler: These two samplers are used to populate the trade space either randomly or 
manually and are typically invoked if there is no initial data available, i.e., they are used primarily to explore the 
design space at the start of the trade space exploration process.  When sampling randomly, the user specifies the 
number of samples that will be generated and the bounds of the multi-dimensional hypercube of X as shown in 
Figure 3a.  Monte Carlo simulation then randomly samples the inputs – drawing from a uniform or normal 
distribution as shown in Figure 3b – and executes the simulation model a user-specified number of times, storing the 
corresponding output in the database.  The bounds of the design variables can be reduced at any time to bias the 
samples in a smaller region within the design space if desired.  
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 (a) Randomly sample over entire design space (b) User specifies sampling distribution – uniform or normal 

Figure 3. Example of Basic Sampler and Input Distributions 

With the Point Sampler, users can manually sample the design space by moving slider bars for each input variable 
using the controls shown in Figure 4a. As such, the Point Sampler allows designers to perform one-factor-at-a-time 
parametric studies of the simulation model if they prefer this to random sampling.  After moving a slider bar, the 
simulation model is executed at the design point specified by the current settings of all the slider bars.  An example 
is shown in Figure 4b where the user examined the variation of wing span on system cost while holding everything 
else at the settings shown in Figure 4a.  This variation was performed after randomly sampling 100 points to identify 
a good starting point for one-factor-at-a-time variations. 

 

  

Span varied; other 
variables held fixed

 
 (a) Manually vary one factor at a time (b) Visualize impact of specific one-factor-at-a-time variation 

Figure 4. Example of Point Sampler for Manual Design Space Sampling 

B. Pareto Sampler: The Pareto Sampler generates new points along the Pareto front as the name implies.  It is 
helpful in exploring the trade space, particularly when multiple objectives are important.  This requires users to 
indicate their direction of preference (e.g., minimize or maximize) for each objective of interest.  The Pareto 
Sampler uses the Pareto Differential Evolution algorithm developed by Madavan24 as the underlying search 
algorithm.  Figure 5 shows an example from the aircraft wing sizing problem where the user wants to minimize cost 
and maximize range without having to assign importance weightings to either objective.  The Pareto points are 
denoted by +’s in both figures where Figure 5a shows the initial front and Figure 5b shows the front after 500 
function evaluations.  In both figures, red points are the feasible points after screening off infeasible points based on 
the constraints (see Section IV.C) while the grey points show all the points that were searched.  We are currently 
working to improve the constraint handling techniques within this search algorithm23 to make more efficient use of 
function evaluations when exploring the Pareto front. 
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 (a) Initial Pareto front after using Basic and Point Samplers (b) Pareto front after 500 additional function evaluations 

Figure 5. Example of Using the Pareto Sampler to Identify the Pareto Front 

C. Attractor:  The attractor generates new sample points near a user-specified point in the trade space, allowing 
users to exploit new information and insights that are gained as the trade space is explored.  The attractor is specified 
in the ATSV interface with a graphical icon  that identifies an n-dimensional point in the trade space, and then 
new sample points are generated near the attractor – or as close as they can get to it.  An example is shown in Figure 
6 where the user specifies an attractor to generate low cost designs for the aircraft wing sizing problem while also 
attempting to fill in a “gap” in the trade space (see Figure 6a).  The new samples are clustered around Attractor_1 as 
seen in Figure 6b.  Since the attractor can be any point in the trade space, Z, it can consist of any n-dimensional 
combination of the inputs, X, and outputs, Y, and it can consist of discrete and continuous variables.  Consequently, 
we have selected Differential Evolution (DE)25 to guide this sampling process where the fitness function in DE is 
defined the Euclidean distance from each sample point to the center of the attractor.  For more details on the DE 
implementation within ATSV and the formulation of the fitness function, we refer the reader to Ref. 6.   

 

   
 (a) Attractor placed in a promising location in the trade space (b) New samples cluster around the attractor 

Figure 6. Example of Attractor Used to Exploit Information Gained during Trade Space Exploration 

D. Preference Sampler: The Preference Sampler populates the trade space in regions that perform well with 
respect to a user-defined preference structure (i.e., importance weightings for each objective of interest).  New 
sample points are generated using DE,25 but the fitness function is now defined by the user’s preference structure 
based on the settings of the Brush/Preference Controls.  A linear weighted sum is currently used for the fitness 
function;6 however, alternative formulations could easily be implemented within ATSV.   
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An example is shown in Figure 7 where minimizing cost is deemed to be twice as important as maximizing range.  
The points are color coded in the plot to indicate the direction of preference (see Figure 7a), and the resulting new 
samples in the region of high preference are highlighted in Figure 7b.  Meanwhile, Figure 7c shows the settings of 
the Brush/Preference Controls for this particular preference structure. 
 

 

Direction of
preference

  
 (a) User-specified preference is indicated by color coding (b) New samples are generated in region of high preference 

 
(c) Corresponding settings of Brush/Preference Controls 

Figure 7. Example of Preference Sampler and Corresponding Brush/Preference Controls23 

E. Guided Pareto Sampler: The Guide Pareto Sampler combines the power of Attractors with the multi-attribute 
exploration capabilities of the Pareto Sampler to allow users to modify the search for Pareto points in real-time, 
exploiting information that is gained during the trade space exploration process.  The newest of our visual steering 
commands, this sampler also uses the Pareto Differential Evolution algorithm developed by Madavan,24 but the user 
can now play a supervisory role and interact with the underlying algorithm by: 

• Select specific points within the data visualization window and use them to seed the initial generation  
• Guide Pareto search algorithms to regions of interest using Attractor icons . 
• Start, pause, and stop the search with the ability to change initial generations and guide directions. 

These interactions allow users to input, change, and adjust their preferences without being overly-burdened by 
constantly inputting new visual steering commands.   

An example of the Guided Pareto Sampler is shown in Figure 8.  An initial Pareto analysis is performed, where 
both f1 and f2 are minimized (see Figure 8a).  The problem is heavily biased towards f1, and the resulting Pareto 
frontier includes only one point.  The plot shows a large region that has not been explored, and a user runs a Guided 
Pareto Sampler to search for the frontier in this region.  An attractor is first placed in the lower right-hand region of 
the scatter plot.  Additionally, the user has the ability to select points to seed the initial generation before starting the 
sampler.  The Guided Pareto Sampler uses this information to perform its Pareto search, where selection strategies 
involve each generation’s fittest members based on both Pareto optimality and their position relative to the Attractor.  
Currently, half of each generation’s members are selected based on Pareto optimality and half are selected based on 
closest distance to the Attractor, but this user-setting can be modified as needed.  As seen in Figure 8b, the resulting 
Guided Pareto Sampler has captured new Pareto optimal designs in regions of the trade space that were initially void 
of data.  Our implementation could easily be extended to provide users with more detailed controls, such as allowing 
users to select each generation’s fittest members, change the crossover methodology, or adjust the values of the 
algorithm’s search parameters.   
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 (a) Initial Pareto search to minimize f1 and f2 (b) Pareto search steered toward unexplored region 

Figure 8. Process of Using Guided Pareto Sampler to Search Trade Space 

IV.  Test Problems 
A suite of test problems has been developed to support our research in trade space exploration.  This suite 

currently includes complex systems designed for land, sea, air, and space: (1) configuration of vehicle concepts, (2) 
conceptual design of a cargo ship, (3) sizing of an aircraft wing, and (4) design of the external fuel tank for the 
Space Shuttle.  An overview of each of these problems follows along with visuals of their trade spaces.   
 

A. Vehicle Configuration Example: The vehicle configuration example was developed in conjunction with 
researchers at General Motors and SUNY-Buffalo to evaluate the technical feasibility of new vehicle concepts.26,27  
The model includes five objectives – acceleration, fuel economy, and three measures of interior accommodation – 
and eleven high-level vehicle design parameters: ten continuous variables that define overall exterior dimensions 
and positions of the occupants, and one discrete variable that specifies the vehicle’s powertrain.  This vehicle 
configuration model also computes vehicle mass, which is neither a design variable nor a performance objective as 
customers do not usually have a preference on the weight of their car; however, vehicle mass is a function of many 
design variables and it strongly influences many performance objectives that are important to customers (e.g., fuel 
economy).27  The model also computes the total violation of all constraints in the model (= ConVio).   

Table 1 summarizes the problem definition.  Bounds on the 10 continuous design variables are normalized to 
[0,1], and the objectives are scaled against the baseline model – defined as the feasible point Y = (1,1,1,1,1,1) – to 
protect the proprietary nature of the data.  The design variable, H, defines the powertrain and can take one of six 
options: [1,2,3,4,5,6].  Finally, the direction of preference for each objective is indicated in the table.  While stating 
these general preferences beforehand may seem counter-intuitive, the end goal is to determine the best point in the 
trade space, and to do this, we would need to specify weights for each objective to aggregate them into a single 
objective function using a weighted-sum, for instance; however, these weights are not specified.  Alternatively, we 
could use a multi-objective genetic algorithm to determine the Pareto front as done previously,27 but that yields a set 
of non-dominated designs, not a single point; hence, this example lends itself well to trade space exploration.   
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Table 1. Vehicle Problem Definition 

Model Inputs 
Variable Lower Bound Upper Bound 

A 0 1 
B 0 1 
C 0 1 
D 0 1 
E 0 1 
F 0 1 
G 0 1 
H 1,2,3,4,5, or 6 
I 0 1 
J 0 1 
K 0 1 

Model Outputs 
ConVio 0 � feasible > 0 � infeasible 
Mass Baseline = 1 Defines weight class 
Obj1 Baseline = 1 Smaller is better 
Obj2 Baseline = 1 Larger is better 
Obj3 Baseline = 1 Larger is better 
Obj4 Baseline = 1 Larger is better 
Obj5 Baseline = 1 Larger is better 

 
Figure 9 shows an example of the multi-attribute trade space for the vehicle configuration model, which was 

obtained using a combination of Basic Sampling, Preference Sampling, and Attractors.  The glyph plot includes iso-
surfaces to indicate different vehicle weight classes, and a promising option is found that improves Obj3, Obj4, and 
Obj5 by 3%, 9%, and 13%, respectively, with only a 2% decrease in Obj1 and Obj2.   

 

 

Figure 9. Glyph Plot of Vehicle Trade Space Showing Mass Contours and a Promising Design6 

B. Conceptual Ship Design: The conceptual ship design example is a multi-objective optimization problem 
adapted from the literature.28,29  Following the formulation in Parsons and Scott,29 the analytical model approximates 
a family of bulk carriers with deadweight between 3,000-50,000 tons and speeds of 14-18 knots.  It has six inputs: 

1. Length (m): 150 < L < 274.32 
2. Beam (m): 21 < B < 32.31 
3. Depth (m): 12 < D < 25 
4. Draft (m): 9.5 < T < 11.71 
5. Block coefficient: 0.63 < CB < 0.75 
6. Speed (kts): 14 < Vk < 18 
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Lower bounds have been added to the original formulation for L, B, D, and T to reduce the design space that is 
searched; however, the reported solutions are encompassed within these bounds.  There are three objectives of 
interest: (1) minimize transportation costs, (2) maximize annual cargo, and (3) minimize lightship weight, and there 
are 9 constraints in addition to the design variable bounds.29   

Figure 10 illustrates how parallel coordinates can be used to place an Attractor in more than two dimensions when 
exploring a multi-attribute trade space.  The six design variables and three objectives are shown in Figure 10a based 
on the results from 100 random samples generated using the Basic Sampler.  The Attractor is then placed so as to 
minimize transportation costs (TC) and lightship weight (LSM) and maximize annual cargo (AC).  The lines are 
color-coded based on this preference (red = most preferred, blue = least preferred) where all three objectives are 
equally weighted (see Figure 10b).  The brush controls in Figure 10b are used to define the feasible trade space, and 
the resulting solutions after 500 new points are generated with the Attractor as shown in Figure 10c (infeasible 
points in gray) and Figure 10d (infeasible points not shown).  These last two figures are particularly insightful since 
they indicate that low-to-medium values of L, high values of B, low values of D and CB lead to highly preferred 
feasible designs (i.e., the location where bands of red lines cross the vertical line for each design variable).  Even 
though T and Vk seem to vary widely, this information helps reduce the search space for the step in the trade study. 
 

   

 (a) Design variables and objectives after 100 random samples, (b) Brush and preference settings for ship design problem 
 color shows preference, and Attractor set for each objective  

   

 (c) Results after 500 new samples generated for Attractor, (d) Same plot of results but only feasible points are shown,  
 color shows preference, gray points are infeasible color indicates preference (red = best, blue = worst) 

Figure 10. Example of Using Parallel Coordinates to Place an Attractor in Multiple Dimensions 
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C. Aircraft Wing Sizing Problem:  The aircraft wing sizing problem, developed in conjunction with engineers at 
The Boeing Company, involves sizing the plan view layout of an aircraft wing to minimize its cost subject to 
constraints on range, buffet altitude, and takeoff field length.30  The designer can manipulate six design variables 
over the following ranges: 

1. Semi-span: 900 < Span < 1150 
2. Aspect ratio: 8 < AR < 13 
3. Quarter chord sweep angle: 31 < Sweep < 37 
4. Taper ratio: 0.15 < Taper < 0.25 
5. Sparbox root chord: 0.75 < YCoff < 1 
6. Fan diameter: 80 < FanDiam < 90 

These design variables are defined in Figure 11, and the specified ranges define the upper and lower bounds for the 
design space samplers shown in Figure 3. 
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Figure 11. Design Variables for Wing Sizing Problem 

The constraints and objective for the wing sizing problem are evaluated using second-order response surface 
models constructed from a 243-point orthogonal array – details can be found in Ref. 30.  The actual values of cost, 
range, buffet altitude, and takeoff field length have been normalized to [0,1] based on the minimum and maximum 
values observed in the sample data due to their proprietary nature.  The original optimization problem was stated as: 
 

Minimize:  Cost  (1) 
Subject to:  Range > 0.589 
 Buffet altitude > 0.603 
     Takeoff field length < 0.377 

 
We have made several modifications to this formulation to make the problem multi-objective in nature, including 

maximizing range while minimizing cost.23  These new formulations have allowed us to study enhancements to the 
underlying DE algorithm, including the incorporation of constraint dominance31 to automatically handle constraints 
when exploring the trade space.  In particular, the domination of two solutions i and j is modified to be:  

 
A solution i constraint-dominates solution j if any of the following conditions are true: 
1) i is feasible and j is infeasible: i constraint-dominates j 
2) i and j are feasible: if i Pareto dominates j, then i constraint-dominates j 
3) i and j are infeasible: if i dominates j in the constraint-violation space, then i constraint-dominates j 

 
Prior to this work, our general philosophy has been to explore the entire trade space – feasible and infeasible – 

when searching and then using brushing to filter out infeasible points since some constraint limits may change as the 
problem evolves.  In highly constrained trade spaces, however, this is not an efficient use of function evaluations.  
An example of the impact can be seen in Figure 12 where the user may think the Pareto front spans a large portion 
of the trade space when in reality the feasible space is quite small (see Figure 12b).  Constraint dominance allows 
users to make more efficient and effective use of new function evaluations when using the Attractor and various 
samplers if it is known a priori that the problem is highly constrained or has a small feasible trade space; if not, then 
using brush controls to manually filter out infeasible designs or Attractors to bias samples in the feasible regions are 
more promising strategies.23 
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 (a) Pareto front of entire trade space (b) Pareto front of feasible space (gray points are infeasbile) 

Figure 12. Pareto Front with and without Automated Constraint Handling23 

D. Space Shuttle External Fuel Tank Design Problem: This problem was originally developed by Dr. Jaroslaw 
Sobieski, formerly of NASA Langley Research Center in Hampton, VA, to illustrate how changes in a problem’s 
objective function influence the resulting optimal design.32  The overall objective is to improve NASA’s Return on 
Investment (ROI) for the Space Shuttle by resizing its external fuel tank.  The external fuel tank is divided into three 
hollow geometric segments: (1) a cylinder (length L, radius R), (2) a hemispherical end cap (radius R), and (3) a 
conical nose (height h, radius R), as shown in Figure 13.  These segments have thicknesses t1, t2, and t3, respectively. 
Each segment is assumed to be a monococque shell constructed from aluminum and welded together from four 
separate pieces of material, resulting in a total of fourteen welded seams.  Surface areas and volumes are determined 
using geometric relations, and first principles and rules of thumb are used to calculate stresses, vibration modes, 
aerodynamic drag, and cost using the analyses in Ref. 32.  

 

      
 (a) External fuel tank configuration (b) Photo at Kennedy Space Center (c) Geometry 

Figure 13. Space Shuttle External Fuel Tank32 

The optimization problem is formulated based on the original model as follows: 
 

Maximize: ROI  (2) 
Subject to: Volume constraint: 

2826 3026 100 2926 0t tV V≤ ≤ ⇒ − − ≤  

Stress and vibration constraints 
8 8

, ,4 10 4 10 0

0.8 0.8 0
e i e iσ σ

ζ ζ
≤ ⋅ ⇒ − ⋅ ≤
≤ ⇒ − ≤

 

Design variables bounds:  
 0.01 < Ln < 5.0 0.25 < t2n < 2.0 
 0.50 < Rn < 2.0 0.25 < t3n < 2.0 
 0.25 < t1n < 2.0 0.10 < h/Rn < 5.0 



 
American Institute of Aeronautics and Astronautics 

 

12 

The objective is to maximize ROI subject to the constraints on the tank volume and stresses and bounds on the 
design variables.  The restriction on tank volume is an equality constraint (~3000 m3 +/- 100 m3), which we have 
found difficult to meet when using ATSV.  The tank volume is dependent upon three parameters (L, R, h/R), and the 
problem has been reformulated so that the designer can vary any two parameters while the third is dependent upon 
these two (i.e., specify values for R and h/R and compute L to satisfy the volume constraint).  Finally, inequality 
constraints are placed on the maximum allowable component stress and on the first bending moment of the tank.  
The equivalent stress experienced by each component cannot exceed the maximum allowable stress of the material 
is used.  Also, the first bending moment of the tank must be kept away from the vibrational frequencies experienced 
during launch to avoid any potential failures. 

This problem is currently being used to test a distributed version of ATSV, one where subsystem designers control 
their own local objectives (e.g., minimize cost, minimize drag penalty, maximize payload, minimize structural 
weight) and then collaborate to optimize the overall system.33  An interesting outcome from these studies is not only 
how to improve ATSV to support distribute collaboration but also the importance of properly communicating design 
information between team members.  An example is shown in Figure 14 where the color-coding indicates different 
users.  The structural engineer (red points in Figure 14), having the most constraints to satisfy, ends up being the 
most effective in finding good solutions.  The engineers concerned with payload (in green) and cost (in yellow) find 
many designs that have high ROI and low cost (see Figure 14a), but without any knowledge of the structural 
engineer’s constraints, the majority of their designs turn out to be infeasible once all constraints are considered at the 
system level (see Figure 14b).  By focusing only on their local subsystem constraints during their search, they 
“overshot” the feasible region from the system’s perspective.   Even though our findings are preliminary, they stress 
the importance of proper communication during collaborative trade space exploration.  

 

   
 (a) Pareto front of entire trade space without constraints (b) Pareto front of feasible space (gray points are infeasible) 

Figure 14. Trade Space Exploration by Different Subsystem Designers 

V. Closing Remarks and Future Work 
As discussed in this paper, multi-dimensional data visualization and visual steering commands allow designers to 

navigate multi-attribute trade spaces in more visual and intuitive ways.  The novelty in our work is providing 
designers with a set of visual steering commands to simultaneously explore the trade space and exploit new 
information and insights as they are gained.  Designers can explore the design space randomly or manually using the 
Basic Sampler or Point Sampler, respectively, or search for the Pareto front in a multi-attribute trade space using the 
Pareto Sampler.  Designers can also exploit information obtained during this exploration process by searching near a 
specific point of interest using the Attractor, within a region of high preference using the Preference Sampler, or 
guiding the search for the Pareto front using the Guided Pareto Sampler.   

To support our research in trade space exploration, we have developed a suite of test problems.  Four problems are 
discussed in this paper, spanning land, sea, air, and space applications: (1) configuration of vehicle concepts, (2) 
conceptual design of a cargo ship, (3) sizing of an aircraft wing, and (4) design of the external fuel tank for the 
Space Shuttle.  The problem formulation and examples from the trade space exploration process are included for 
each problem, and more complex problems are currently being developed and sought to expand the test suite.   
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This suite of problems is enabling scientific studies for algorithmic development as well as empirical studies 
involving human decision-makers.  For example, we are fine-tuning the evolutionary algorithm that underlies our 
visual steering commands to make them more efficient and robust.34  In conjunction with this, we are developing 
new samplers to enable the Most Informative Sampler, Most Uncertain Sampler, etc., which support different 
aspects of the “Design by Shopping” process.5  We also envision a “detractor” or “repeller” that works in reverse of 
an attractor, i.e., it generates points that are NOT like the user-specified point.  We are also starting to conduct 
experiments to quantify the benefits of putting humans back “in-the-loop” during the design optimization process.  
Preliminary results are very promising: designers using the visual steering commands within ATSV to solve the 
vehicle configuration problem have shown a 4x-7x improvement in efficiency over optimization algorithms running 
“blindly” without any human intervention.35  We are currently planning studies involving the entire suite of test 
problems to further substantiate these findings and generalize our results.   
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Appendix 

Table A. Summary of Graphical Capabilities and Data Input Formats for Multi-Dimensional Data Visualization Software Packages 
(Y = has this capability, N = capability not available; $ = least expensive, $$$ = most expensive) 

 


